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Abstract

Two Nebraska bridges with asphalt overlay were selected for nondestructive testing
and evaluation (NDT/NDE). Three NDT techniques were conducted on these two bridges,
including Ground Penetrating Radar (GPR), Half-Cell Potential (HCP) and Unmanned
Aerial Vehicle (UAV) imaging. NDT data were collected during three construction stages
of the bridges: (1) before repair on existing asphalt overlay; (2) on bare concrete after
asphalt removal; (3) and after repairing delaminated concrete.

Amachine learning technique, autoencoder, is used to build the quantitative relationship
between different NDT data sets. On bare concrete, the GPR amplitude and HCP voltage
show a strong linear relationship. Then a threshold for GPR amplitude (-6.4 dB) can be
determined based on the well-established HCP criteria. The GPR amplitudes on asphalt
overlay also show a clear correlation with GPR amplitudes on bare concrete. Direct
comparison of these two GPR amplitude maps indicates GPR data collected on asphalt
overlay could detect all severely deteriorated areas but may miss some mild deterioration.

A big data image pipeline was created formapping cracks and repair patches with images
collected from an UAV. Comparing surface defects on asphalt overlay with HCP and GPR
data suggests that UAV images may be used as an initial decision criterion for deploying
and extending NDT inspection of bridge decks. Further studies are needed to evaluate
the performance of UAV imaging based visual inspection through quantitative analysis of
surface defects and severity of deterioration.
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Chapter 1

Introduction

1.1 Background
Asphalt overlay on top of a waterproofing membrane (ACC&M) is increasingly applied on
many bridges in the United States. ACC&M offers an extra layer of protection to concrete
deck and increases the service life of structure by reducing the traffic-induced stress on
concrete and concrete exposure to chemicals. However, asphalt overlay hinders visual
inspection of the concrete deck surface and limits applications of many nondestructive
testing (NDT) methods. If a breach of the waterproofing membrane occurs, ingression of
chloride agents into concrete over time may initiate corrosion of steel reinforcement. Many
State DOTs perform visual inspection of the wearing surfaces to identify the deterioration
of overlays. The types of defects may include debonding, delamination, spalls, patches,
potholes, cracks, abrasion, wearing, rutting, distortion, or section loss, etc. In a previous
research project (M075), the authors showed that there is a strong correlation between
visible transverse cracks on concrete surface and deteriorated areas detected by ground
penetrating RADAR (GPR) and Vertical Electrical Impedance system [1]. For bridge decks
with asphalt overlay, it is important to understand how surface defects on the asphalt overlay
are associated with internal condition of the concrete. Therefore, we need to collect NDT
data on decks with andwithout the asphalt overlay and to determine the relationship between
them.

Uncertainties in NDT data and defects identification depend on the NDT technique,
types of defects, and environmental factors during the field testing. Using multiple NDT
technologies may increase reliability of concrete defect assessment and severity of deterio-
ration [1–3].
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According to the American Society for Testing and Materials (ASTM) D6087 standard
[4], GPR is currently the only proven NDT method to evaluate a concrete bridge deck
with asphalt overlays. GPR has been widely used for condition assessment of bridge
decks by measuring rebar reflection amplitude and variation of electrical permittivity and
conductivity of concrete over the bridge deck [5, 6]. This unique feature in GPR helps
identify areas on the bridge deck that are susceptible to reinforcement corrosion without
removing asphalt layer. Ground-coupledGPR antenna provide high quality data and reliable
assessment of bridge decks. However, ground-coupled GPR data collection can only be
conducted at a walking speed and requires traffic control for bridge evaluation.

Half-Cell Potential (HCP) is the standard test method for measuring the probability of
corrosion in reinforced concrete structures. HCP measures the electric potential between
top reinforcement mat and a probe on concrete surface. Since GPR and HCP work based
on electrical properties of concrete, they are expected to provide similar results when used
on the same bridge deck. However, no quantitative comparison can be found in literature
between GPR amplitudes collected on asphalt overlay and HCP on the bare concrete after
removing the asphalt. Providing this comparison should help transportation agencies and
consulting companies to better interpret GPRdata based onwell-establishedHCP technique.

From a survey conducted by the American Association of State Highway and Trans-
portation Officials (ASSHTO) in 2019, it was found that 36 state Department of Trans-
portation (DOT) had researched and/or used UAVs for their bridge inspections, surveying,
and monitoring and mitigating risks posed by landslides or flooding [7], which increased
from 17 states in 2018. Nebraska DOT has started investigating the feasibility of UAV
implementation in inspection procedures and started developing drone polices. In studies
that investigated the viability of UAV for bridge inspection inMichigan andMinnesota, both
states indicated that the benefits would include improving safety of the manual inspection
procedure which typically involves bringing heavy equipment, detouring traffic, and setting
up work zones while UAVs can get in and out quickly without obstructions. The benefits
increase when UAVs can access areas that it is difficult to inspect (underneath the bridge or
to a high truss member, etc.) for human inspection.

In addition, there has been constant effort in applying machine/deep learning models
to detect damages for the past decade [8–15] with images of structural members. Most of
the previous research focused on testing out crack detection algorithms and the limitation
exists because the models were implemented only for a local region. In this project, a deep
learning model was implemented for the image data analysis using image data collected
from UAVs and the difference with previous research is that the research team at UNL
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focused on developing a model that can be applied to a larger scale for the entire structural
member which is rarely demonstrated in other research studies.

1.2 Objectives and Research Task
GPR is an effective NDT method to evaluate deterioration of bare concrete bridge decks.
GPR can also be used on asphalt overlaid bridge decks. However, the test efficacy and
reliability need further investigation because the overlay brings additional uncertainties
to the data interpretation. In addition, asphalt overlay hinders direct visual inspection of
concrete surface and application of many other NDT methods.

In this study, the research team applied three NDT methods, GPR, HCP, and UAV
imaging to two Nebraska bridges. GPR and UAV imaging data were collected before and
after bridge deck repair on both asphalt overlay and bare concrete decks, and HCP data
were collected on the bare concrete after asphalt removal. The HCP test was used as the
ground-truth in this research to evaluate the performance of GPR test. Research objectives
and main tasks are shown below.

• Although GPR is an effective NDT technique on bare concrete bridge decks, deter-
mination of threshold amplitude is still a challenging topic to distinguish deteriorated
areas from sound in reinforced concrete. In this study, the GPR data were correlated
to the HCP data to determine the threshold amplitudes.

• The asphalt layer causes additional attenuation of GPR signals and alters the threshold
amplitudes that were obtained from GPR survey on bare concrete decks. In this
project, GPR data collected on asphalt overlaid decks were compared to the HCP and
GPR data on bare concrete, in order to determine the threshold amplitudes for GPR
on asphalt.

• For quantitative comparison of NDT data (GPR and HCP) and obtaining threshold
amplitudes, many assumptions regarding the type of relationship are needed. To
prevent bias and increase generality, machine learning models were built to obtain
quantitative relationships between different data sets.

• The asphalt layer hinders visual inspection of concrete deck surface. To investigate
if defects on asphalt surface might be indicative of internal concrete deterioration, a
UAV imaging system was flown over the bridge and captured localized image from
the deck surface with and without the asphalt layer. Localized images were stitched
together with a commercial software and a stitched image for the entire bridge deck
was generated. Later, location of visible surface defects including spalls and potholes
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were extracted and compared with the GPR and HCP data.

1.3 Report Overview
This report outlines the findings of the research conducted by University of Nebraska-
Lincoln (UNL) research teamwith the support fromNebraskaDepartment of Transportation
(NDOT).Chapter 1 summarizes the research objectives, and the background information of
NDT technologies in condition assessment of bridge decks. Chapter 2 presents the working
principle of three NDT techniques, GPR, HCP and UAV imaging and their application to
bridge deck evaluation. Chapter 3 presents the result of the three NDT technologies
deployed on two Nebraska bridges with asphalt overlay. Conclusions and implementation
plan of this research project are presented in Chapter 4 .
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Chapter 2

Nondestructive Testing Techniques and
Data Analysis

2.1 Ground Penetrating Radar
Ground Penetrating Radar is a widely acceptedNDT technique to identify the steel corrosion
and potential deterioration in concrete bridge decks. A GPR system generally consists of
a control computer and an antenna. The computer provides power to the antenna, set
measurement parameters, and stores recorded data. The antenna box contains a transmitter
module to send electromagnetic pulse and a receiver to receive echoes from the surface and
subsurface interfaces. Meanwhile an external Real-Time Kinematic (RTK) GPS system
attached to the GPR survey cart provides real-time positions during the scanning.

A survey cart, shown in the Figure 2.1, was used in ground-coupled GPR survey. Since
ground-coupled GPR survey can only be conducted at a walking speed, traffic control is
needed. The center frequency of the antenna determines the maximum penetration depth
of EM wave and the vertical resolution of the B-scan image. Increasing the frequency
will improve the image resolution at the cost of decreasing the penetration depth. In most
bridge deck surveys, ground-coupled antennas with a center frequency of 1.5 GHz provides
sufficient penetration depth and adequate resolution. The time range determines the total
time that GPR records for the reflections from the subsurface. The proper time range can
be determined by the expected penetration depth and velocity information.
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(a) GSSI SIR-4000 computer (b) GPR system on a survey cart

Fig. 2.1. GSSI-4000 GPR system.

Fig. 2.2. GPR B-scan image

Figure 2.2 shows a GPR B-scan images recorded on a bridge deck with 8 ns time
range in the vertical scale. As highlighted in Figure 2.2, direct coupling, rebar reflection,
and bottom of the bridge deck are the main features that can be visually identified in the
image. The conventional GPR analysis method is to analyze B-scans through comparison of
depth-corrected amplitudes of rebar reflections. Concrete deterioration and rebar corrosion
will decrease the GPR amplitude and increase attenuation. Therefore, GPR amplitude (or
attenuation) map is most commonly used to represent deterioration of bridge deck.

TheUNL research team recently proposed a complete procedure forGPRdata processing
to automate GPR data analysis. Major improvements include accurate zero offset, migration
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of rebar reflections, amplitude correction based on actual rebar depth, and accurate wave
velocity, etc. Details can be found in recently published research reports and publications
[16, 17].

2.2 Half-Cell Potential
HCP testing is the standardized test method in ASTM C876 [18] for measuring the prob-
ability of corrosion of uncoated steel reinforcement in concrete structures. An electrode
of the HCP device forms one half of the cell from concrete surface and the reinforcing
steel rebar in the concrete form the other half cell. The behavior of steel in concrete can be
characterized bymeasuring its half-cell potential. Figure 2.3 shows the working principle of
HCP methodology. The chances of corrosion forming on the steel in concrete and half-cell
potential are directly proportional, the higher the potential, the higher the risk of corrosion
on steel reinforcement. Although the principles of HCP testing are rather simple, the pro-
cedure is time-consuming which requires drilling a hole in concrete to make a connection
to the steel reinforcement.

Copper rod

Copper sulfate solution

Voltmeter

-+

Porous plugSponge
Connection 
to rebar mat

Fig. 2.3. Schematic working principle of HCP

2.3 Unmanned Aerial Vehicle Imaging Analysis
With the increase in UAV implementation for bridge inspection, a big data image pipeline
for mapping cracks and patches of repair was constructed by the research team. The typical
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three steps of the image-based data processing pipeline would include 1) Data Collection,
2) Data Analytics, and 3) Data Management processes. The data collection step includes
image collection with a commercial UAV. In this project, DJI Mavic Pro quadcopter was
used for the UAV and the DJI Ground Station Pro (DJI GS Pro) was used to efficiently create
waypoint flight paths, and flight zones for the area of interest. Then as the next step, for
localization, a commercial photogrammetry software, Pix4Dwas used to reconstruct the 3D
points and create a stitched imagemap from the image dataset collected from the UAV. Up to
this data collection procedure, commercial tools were used which can easily be adapted by
any UAV pilot/engineer who has license from the Federal Aviation Administration (FAA).

The pipeline development from our research team has mainly focused on building the
next steps of the pipeline with data analytics and data management processes. The research
team used a region-basedMaskR-CNN[19] deep learning algorithm for conducting instance
level segmentation of a given image. Mask R-CNN is an extended version of the Faster
R-CNN[20] which can extract features and Region-of-Interests (RoIs). Once the features
and RoIs are identified within a given image, mask prediction, bounding box regression, and
label classification can be performed simultaneously within the neural network. To make
predictions (find deficiencies or target objects such as cracks, spalls, pot holes, or patches),
training and validation takes place with the sliced images (512 by 320 pixel pieces), that are
pre-processed (based on a threshold image where exposure of the image can be adjusted),
and fed into the neural network.

The data management procedure involves creating a database for the deficiencies iden-
tified from the data analytics step. For example, if the target deficiency is a crack, this
step will collect all mask end points that were found from the Mask R-CNN model and
create a JavaScript Object Notation (JSON) formatted file, initially. Then, the data plotter
will plot and fill each individual mask on a blank 512 by 320 image to create a binary fill
(crack or non-crack). As a next step, the data analyzer will construct Euclidean Distance
Transform (EDT) from each mask, and construct binary skeletons for each mask, index
the EDT using non-zero points in the binary skeletons to obtain skeleton with pixel unit
crack measurements along the center line of the crack, and finally construct a heat map
showing the indexed (relative) crack measurement data. Finally, additional to the crack DB,
for visual conformation, the crack mapper will take positions of masks and plot all target
predictions (for example, cracks) on the original sliced image and these images are stitched
back together to create a global crack map. Figure 2.4 shows the overall process of the UAV
Image-based big data pipeline introduced in this section.
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Fig. 2.4. Summary of the UAV image-based big data pipeline
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2.4 Data Analysis
Transportation agencies are increasingly using multi-sensor data collections to evaluate the
bridge structures for rehabilitation and bridge infrastructure management [1, 21]. Multi-
sensor data provides complementary information about bridge deck conditions andmay give
more accurate evaluation than an individual method may provide. However, quantitative
comparison and visualization of multi-sensor data are still challenging. For example, unlike
controlled laboratory environment, many unpredictable factors can influence field testing
data and make interpretations difficult. Data fusion, as a systematic way of incorporating
multi-sensor data, can help increase the reliability of data and reduce uncertainties. In this
project, an autoencoder-based data fusion technique is used to reduce the noise from pairs
of multi-source data to obtain a clear relationship. For example, based on the relationship
between GPR and HCP data, a threshold amplitude with regard to the threshold potential
of HCP (-350 mV) can be determined.

Fully connected layers

Input data Output

Code layer

Fig. 2.5. Schematic diagram of autoencoder

2.4.1 Autoencoder

Autoencoders are classified among unsupervised Machine Learning (ML) models that are
trained to copy input data. One of the major applications of autoencoder is nonlinear
principal component analysis (NLPCA). Figure 2.5 shows the architecture of a simple
autoencoder. Autoencoder consists of two main parts: Encoder and Decoder. The Encoder
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transforms the input data into the Code layer, which has lower dimension than input data.
TheDecoder part reconstructs the original inputs from the Code layer. In complex problems,
autoencoder can eliminate noise from the data and be used as a regression model.

2.4.2 Previous results from M075 project

In research project M075, sponsored by NDOT, the UNL team collaborated with a re-
search team at Brigham Young University (BYU) to test three bridges using multiple NDE
technologies [1, 22]. The three bridges have different types of overlays: no overlay, con-
crete overlay, and asphalt overlay. The UNL team collected GPR data and high-definition
(HD) images using a vehicle-mounted imaging system. The BYU team performed vertical
impedance (VEI) test. Since both GPR and VEI measure electrical properties of concrete,
results from these two tests are expected to show high correlation.

Extensive data analyses were performed for bridge S077 05693R, which has a concrete
overlay. To establish the relationship betweenGPRandVEImeasurements, we selectedGPR
and VEI data collected from the same positions on Bridge S077 05693R for autoencoder
training. Figure 2.6 shows the scattered plot of GPR and VEI data before (Input layer) and
after (Output layer) autoencoder training. The output data shows much less scattering and
gives a clear nonlinear relationship between the GPR and VEI data. This relationship was
used to convert the remaining GPR data to VEI format, or vice versa. The converted GPR
or VEI data can then be combined to form a fused NDE map. Compared to individual GPR
and VEI maps, the fuse map has all critical features, but also shows additional features
that were not observed on each individual map. Figure 2.7 shows the fused GPR and VEI
map overlapped with identified surface cracks. The cracks detected by the HD imaging
match the GPR/VEI detected deterioration areas very well. The research findings show that
combining multiple NDT data sets can improve the accuracy and resolution of bridge deck
evaluation.

In this project, we will use the similar autoencoder model to build the relationship
between GPR andHCP data obtained on bare concrete deck, which can be used to determine
proper threshold amplitudes for GPR data.
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(a) (b)

Fig. 2.6. Scatter plot of GPR vs. VEI data at the same locations on bridge S077 05693R:
(a) scaled value of original input data and (b) autoencoder output
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Fig. 2.7. Identified cracks overlapped on the fused GPR/VEI map (Bridge S077 05693R in
M075 project)
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Chapter 3

Field Demonstration

3.1 Bridge Information and Test Plan

Fig. 3.1. Location of two bridges for NDT evaluation

Two bridges were selected by NDOT for NDT data collection: S075 17596 and S075 17062.
Both bridge decks were reconstructed in 1974 with asphalt overlay and waterproofing
membrane. Figure 3.1 shows the locations of both bridges on the Google map. The bridge
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information is shown in Table 3.1.

Table 3.1. Bridge information: S075 17596 and S075 17062.

Bridge ID S075 17596 S075 17062
Total length 151.9 ft 60 ft

Width 40.0 ft 44.0 ft
Year built 1933 1938

Year reconstructed 1974 1974
Condition Fair* Fair*

Similar test plans were scheduled for both bridges. Data collection was performed in
three stages of construction: (1) before removal of existing ACC&M overlay on August
24, (2) on bare concrete after removing the overlay on August 27, and (3) on bare concrete
after repairing delaminated concrete and before placement of a new ACC&M overlay on
September 18. On August 24, GPR and UAV data were collected on existing overlays.
On August 27, the UNL team collected GPR data on bare concrete decks after asphalt
was removed. On the same day, a team of engineers from Vector Corrosion Service Inc.
collected HCP data from two bridge decks. On September 18, the UNL team collected GPR
data and UAV images from both bridges on concrete surface after the decks were repaired
with concrete patches. Table 3.2 shows the summary of NDT tests at three construction
stages on both bridges.

Table 3.2. Summary of field data collection

NDT
Bridge S075 17596 Bridge S075 17062

08/24 08/27 09/18 08/24 08/27 09/18
GPR 3 3 3 3 3 3

UAV 3 3 3 3

HCP 3 3

3.2 Bridge 1: S075 17596

3.2.1 Information

Bridge S075 17596 is located on US75/US77 over Omaha Creek in Nebraska, United
States. Figure 3.2 shows the satellite image of the bridge. The bridge has three spans, with
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a length of 151.9 ft and a width of 40 ft, and carries two-way traffic. The rebar spacing in
transverse direction is 10 in for most locations. In 1974, the bridge was reconstructed and
two shoulders were added to existing lanes. After widening, the bridge received asphalt
overlay on a waterproofing membrane. In 2010, a paving project partially removed and
replaced the ACC&M overlay. This work was not completed to meet the current or previous
standard.

In Figure 3.2, the red lines highlight the GPR scan region on asphalt overlaid deck
on August 24. The blue dashed lines indicate the boundaries of GPR scan region on
August 27 and September 18. In all GPR scans, the spatial resolution was set as 3 mm
in the longitudinal direction and line spacing of 1 ft in the transverse direction. HCP data
was collected on concrete surface after asphalt removal on August 27. UAV images were
collected on asphalt surface before repair and on concrete surface after repair. Refer to
Table 3.2 for details.

N

X
Y

Aug. 24 

Aug. 27 and Sept. 18  

Fig. 3.2. Satellite image of bridge S075 17596

3.2.2 NDT results

Ground Penetrating Radar

Figure 3.3a shows the GPR amplitude map based on data collected on bridge S07517596
deck with existing asphalt overlay. The black lines show the boundaries of western lane
and shoulder. In this map, low amplitude areas are shown with red color to indicate deck
deterioration. Low amplitude is also observed along a horizontal line at 10 ft in transverse
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(a) On asphalt overlay

(b) On concrete before repair

(c) On repaired concrete

Fig. 3.3. GPR amplitude maps from bridge S075 17596 in three construction stages
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direction, which corresponds to the construction joint between the shoulder and driving lane.
Major low amplitude regions in driving lane extends from 40 ft to 120 ft in longitudinal
direction and along two end joints.

Figure 3.3b shows the GPR amplitude map using data collected on the western lane
and shoulder of the bare concrete deck after the asphalt overlay was removed. Similar to
the map with the asphalt overlay, low amplitudes occurs along the shoulder joint at 10 ft in
transverse direction. Deterioration is also observed along two more horizontal lines at 5 ft
and 15 ft in transverse direction, which are also observed on the map of asphalt overlaid
deck but with less clarity. Although the map on bare concrete gives less severe deterioration
than the map on asphalt overlay, both maps highlight the same deterioration regions.

Figure 3.3c shows theGPR amplitudemap of the bridge deck after repairing delaminated
regions detected by chain drag test. Figures 3.3b and 3.3c are very similar, except for the
repaired regions marked by the transparent dark color. Since the new concrete patches were
still wet during the GPR testing, they are shown as red color due to high attenuation of GPR
signals in wet concrete. These patches should not be misinterpreted as defects.

Half-cell potential

HCP data was collected on a grid of 2 by 2 ft on the bridge deck after the asphalt layer were
removed. In order to make the electrical circuit, a hole was drilled through the concrete
cover to the top rebar level. Figure 3.4 shows HCP potential map of the bridge deck obtained
from the western lane and shoulder as indicated by the dashed lines in Figure 3.2. The
HCP map indicates a major portion of the driving lane has higher probability of corrosion
activity than the shoulder. Similar to GPR maps, shown in Figures 3.3a and 3.3b, most
highly negative potential regions are observed from 40 ft to 120 ft in longitudinal direction
and along the horizontal line at 15 ft.

Unmanned Aerial Vehicle Imaging Analysis

A total number of 353 images were collected on August 24 from the first bridge (S075
17596) for a 40 minute data collection time, and 231 images were collected on September
18 from the same bridge for a 30 minute data collection time. Approximately 10,900 square
feet of area was covered from each data collection. In the first data collection conducted
on the asphalt overlay bridge on 8/24, although more images were collected, only 70% of
the images had sufficient features to allow stitching for the calibrated images. The data
collected on this day with the UAV had some limitations because traffic was controlled
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Fig. 3.4. Half-cell potential map of the bridge S075 17596

only on one side of the bridge and the flight had to be paused and resumed multiple times
while semi-trailers were passing by. As a result, the stitched image map is warped and
missing some important information within the area of interest (Figure 3.5a). In this study,
delamination, patched area, and cracks were the type of defects that was inspected with our
data analytics tools.

The images collected from the UAV for this bridge had some limitations as discussed
above. Traffic control was conducted only on one side of the bridge and data collection
was interrupted multiple times. In addition, the image capture from the UAV had to be
conducted from a height 16 ft above the bridge deck. This can be improved by having
manual control of the UAV for future data collection to improve the resolution of the images
being collected. The predictions made from the deep learning model did not show much
crack information. In the zoomed image of the top left corner between the expansion joints,
some of the transverse cracks were detected from the prediction as shown in Figure 3.5b.
These are also the locations in proximity where delamination was identified by NDOT
chain drag operation after asphalt removal and later repaired with concrete patches (patches
identified in Figure 3.5c).

In the second data collection conducted on the repaired bridge on September 18, most of
the images (230 images; 99%) had an overlapping feature which allowed a better stitching
result as shown in Figure 3.5c. The stitching results are improved than the image collected
on 8/24. Since the images were still collected from 16 ft above the bridge deck, there were
not many cracks detected on the bare deck. Yet, the photos do allow to compute the area of
patches.
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(a) Stitched UAV image collected on asphalt overlaid concrete deck

(b) Closeup view of the left top corner with cracks detected on Bridge S075 17596 (asphalt overlaid
concrete deck)

(c) Stitched UAV image of bridge S075 17596 collected on repaired concrete deck

Fig. 3.5. Stitched UAV images of bridge S075 17596 before and after repair
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3.2.3 Multi-sensing data analysis of bridge S075 17596

GPR data collected on asphalt overlay and on concrete

GPR data collected on the same bridge on asphalt overlay and bare concrete will allow us to
analyze the correlation between two sets of data, and evaluate the effect of asphalt overlay
on GPR. GPR amplitude maps on asphalt overlay (Figure 3.3a) and on bare concrete (Figure
3.3b) are in general agreement. For qualitative comparison of these two GPR results, we
overlapped the deteriorated areas detected by two GPR scans and showed the overlapped
comparison in Figure 3.6.

In Figure 3.6, the red color represents deterioration detected by GPR scans on bare
concrete, and the blue color indicates deterioration detected by GPR scans on asphalt
overlay. Purple color indicates deterioration detected by both GPR scans. In general, both
maps agree with each other in deterioration regions, especially along the cold joint at 10 ft
(transverse direction) and a horizontal line at 5ft. Both maps also detect deterioration at the
end joints and in the driving lane between 70 ft and 120 ft. However, the GPR data collected
on concrete (red) detected more deteriorated areas in the driving lane along a horizontal line
at 15 ft in the transverse direction. These areas might have less severe deterioration (light
blue color in Figure 3.3b) which was not clearly shown in GPR data collected on asphalt
overlay.

Fig. 3.6. Comparison of GPR maps collected on Bridge S075 17596 on asphalt overlay and
on concrete deck

For the purpose of a quantitative comparison, Figure 3.7a shows a scatter plot of GPR
rebar amplitudes collected on the same positions on the asphalt and bare concrete. There
are 4106 data points in the scatter plot. GPR data on concrete has a slightly larger amplitude
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range (-15 dB ∼ 6 dB) than the data on asphalt surface (-12 dB ∼ 2 dB). It might be caused
by different surface reflection amplitudes used in the amplitude normalization procedure
[16]. Since the surface reflection amplitude on concrete is smaller than that on the asphalt
surface, the normalized GPR amplitudes collected on concrete surface show a larger data
range and more scattering. Although a strong relationship is observed in Figure 3.7a, no
further conclusion can be drawn regarding the type of relationship between rebar amplitudes
in these two data sets. Therefore, an autoencoder was designed and trained as a regression
model to determine a relationship between GPR data collected on asphalt and on concrete.
Figure 3.7b shows the result of autoencoder output, which gives a nearly linear correlation
between GPR amplitudes collected on asphalt and concrete surfaces. The scattered data
points were removed by the model, and the GPR data on concrete deck has a smaller data
range than before. Since the slope of output line is less than 1.0, it indicates higher rate of
attenuation in asphalt overlaid deck than in bare concrete deck for this bridge.

(a) (b)

Y = 0.95x + 1.3

Fig. 3.7. Autoencoder (a) input and (b) output for GPR data collected on asphalt overlay
and bare concrete deck

Correlation between GPR and HCP collected on concrete deck

According to ASTM C876 [18], HCP data potential values below -350 mV and above -200
mV are associated with more than 90% and less than 10% probabilities of reinforcement
corrosion in concrete. Any voltage measurements between -350 mV and -200 mV in HCP
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data are defined as uncertain. By understanding the relationship between GPR and HCP
on bare concrete, we can determine the threshold of GPR amplitudes for identification of
deterioration in bridge deck. Therefore another autoencoder was designed to determine the
relationship between GPR and HCP data collected on the concrete bridge deck.

Figure 3.8a shows the scatter plot of HCP data and average of GPR amplitudes within
1.3 ft radius from HCP grid points. There are 744 data points in this figure. Figure
3.8b shows the output of autoencoder, which gives a strong linear relationship between
GPR amplitude and HCP. Based on the linear fitting formula, the voltages of -350 mV
and -200 mV correspond to GPR amplitudes (rebar reflection, depth corrected and surface
normalized) of -6.4 dB and -4.15 dB, respectively. These two thresholds are used to define
color ranges in GPR amplitude maps in Figure 3.3. It should be noted that, since there are
not sufficient data points below -350 mVHCP in Figure 3.8a, this relationship might be only
accurate for data range above -350 mV, i.e., concrete deck with less severe deterioration.

(a) (b)

Y = 67x + 79

Fig. 3.8. Autoencoder (a) input and (b) output for GPR and HCP data collected on bare
concrete

The third autoencoder is designed to determine the relationship between GPR rebar
amplitudes collected on asphalt overlay and HCP voltages collected on the bare concrete.
Figure 3.9a gives the scatter plot. Unlike in Figure 3.8a, data points in this plot show large
scattering. The correlation between GPR on asphalt and HCP is weak and any conclusion
from this relationship may not be reliable. Therefore, instead of using the relationship in
Figures 3.9b, GPR threshold amplitudes were determined indirectly based on relationship
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between GPR and HCP data collected on concrete, and between GPR amplitudes collected
on asphalt and on concrete. According to formulas presented in Figures 3.7 b and 3.8,
thresholds of -8.1 dB and -5.75 dB was obtained for GPR amplitudes on asphalt with
respect to -350 mV and -200 mV in HCP data.

(a) (b)

Y = 55x + 140

Fig. 3.9. Autoencoder (a) input and (b) output for GPR and HCP data collected on asphalt
and bare concrete

Comparison between GPR map and UAV images

Figure 3.10 shows the location of surface defects on asphalt surface that are extracted
from the UAV stitched image in Figure 3.5a and then overlapped on the GPR amplitude
map collected on the asphalt overlay. Most defects on asphalt overlay correspond to low
amplitude on the GPR map, and especially good agreement is obtained along the shoulder
joint and the lane divider. Some surface defects near the top right corner are not shown in
GPR map on asphalt overlay. Combining information from both GPR and UAV images will
provide more accurate evaluation of bridge deck.

In Figure 3.11, locations of repair patches, based on delamination detected by chain-
drag, are overlapped with the GPR amplitude map. The visual comparison indicates that
most delamination were detected by GPR on asphalt. Since GPR is sensitive to early-stage
deterioration, it shows more low amplitude areas than chain-drag. Further studies are
needed to determine if GPR data should be used with chain-drag test on concrete deck to
guide repairs.
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Fig. 3.10. Asphalt surface defects overlapped on GPR amplitude map collected on asphalt
overlay

Fig. 3.11. Concrete patches overlapped on GPR amplitude map collected on asphalt overlay
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3.3 Bridge 2: S075 17062

3.3.1 Bridge information

Bridge S075 17596 is located on IRR/US75/US77 over the Omaha Creek Tributary in
Nebraska, United States. Figure 3.12 shows the satellite image of the bridge. The bridge
with three-span deck system is 60 ft long in total and 44 ft in width that carries two-
way traffic. This bridge originally had only two driving lanes. In 1974 the bridge was
reconstructed, and two shoulders were added to existing lanes. After widening, the bridge
received asphalt overlay on a waterproofing membrane. In 2010, a paving project partially
removed and replaced the ACC&M overlay. Some deck concrete was repaired with asphalt
patches then covered with ACC&M. This work was not completed to meet the current or
previous standards. In Figure 3.12, the red solid lines highlight the boundaries of GPR scan
region on August 24. The blue dashed lines indicate the boundaries of GPR scan region on
August 27 and September 18. For all GPR tests, the resolution of scans was set 3 mm in
longitudinal direction and line spacing of 1 ft in lateral direction.

N

X

Y

Aug. 24 

Aug. 27 and Sept. 18  

Fig. 3.12. Satellite image of bridge S075 17062
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3.3.2 NDT results

Ground Penetrating Radar

GPR data collected on the bridge shows that no top rebar mat was in place for this bridge
deck due to large width per length ratio. Consequently, no GPR amplitude map can be
generated for this bridge deck. Figure 3.13 shows a B-scan collected on the bridge deck
showing that only a few top rebars at the joints of each span. The 1.5 GHz GPR antenna
cannot receive reflections from the bottom level rebars. Therefore, GPR data will not be
used for data analysis of this bridge deck.

Fig. 3.13. GPR B-scan from the bridge S075 17062 (Google map)

Fig. 3.14. Half cell potential map of the bridge S075 17062
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Half-Cell Potential

HCP data was collected on a 2 by 2 ft grid on the bridge deck. To make the electrical circuit,
a hole was drilled through the concrete to the bottom rebar level. Figure 3.14 shows the
potential map of the bridge deck collected on the western lane and the shoulder as indicated
by the blue dashed lines in Figure 3.12. In contrast to shoulder, the driving lane may have
high probability of corrosion activity according to the HCP data.

Unmanned Aerial Vehicle Imaging Analysis

A total number of 200 images were collected on August 24 from the Bridge S075 17062
for a 13-minute data collection time and 126 images were collected on September 18
from the identical bridge for a 16-minute data collection time after the deck was repaired.
Approximately 6,100 square feet of area was covered from each data collection. In the first
data collection conducted on the asphalt overlay bridge onAugust 24, 98% of the images had
sufficient features to allow stitching for the calibrated images. The results are demonstrated
on a stitched image map shown in Figure 3.15. Figure 3.15 also shows the crack detection
conducted by the deep learning model. It is clearly shown that several transverse cracks are
identified within the traffic lane and shoulder of the bridge. The cracks are formed between
and in proximity to where the expansion joints are located in this bridge.

Fig. 3.15. Stitched image of asphalt overlaid concrete deck for bridge S075 17062

With the second data collection conducted on the repaired bridge on September 18,
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99% of the images collected had an overlapping feature which allowed creating a stitch
map as shown in Figure 3.16. The stitched image clearly shows the expansion joints and
concrete repair patches. Most patches are along these joints between different spans. The
deep learning model predictions identified in Figure 3.16 detects the edges of these patches
which helped calculate the area of repair patches. This calculation can help quantify the
amount of repair conducted for these bridges with UAV images.

Fig. 3.16. Stitched image for Bridge S075 17062 collected on repaired concrete deck

3.3.3 Multi-sensing data analysis for bridge S075 17062

Figure 3.17 shows location of defects on asphalt overlay overlapped on the HCP map of the
bridge deck. Most spalls and old asphalt patches are on the driving lane where the HCP
data had more negative voltages. This comparison means surface defects on asphalt overlay
may indicate concrete deck deterioration to some degrees, but the surface defect area is
much less than the actual deterioration area detected by the HCP measurements.

Figure 3.18 shows the location of new concrete repair patches overlapped on the HCP
map. Concrete repair regions were determined based on chain-drag test. The concrete
patches agree with the areas with large negative HCP values. However, HCP indicates
severe corrosion deterioration at the right joint that was not repaired.
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Fig. 3.17. Surface defect locations overlapped on HCP map

Fig. 3.18. New concrete patch locations overlapped on HCP map
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Chapter 4

Conclusions and Future Work

In this research project, two asphalt overlaid bridges were selected by NDOT for demon-
stration of GPR and UAV imaging system. These NDT techniques (GPR, UAV imaging,
and half-cell potential) were performed on the bridge decks during three stages of repair to
determine the effectiveness of combining GPR and UAV imaging in evaluation of concrete
bridge decks with asphalt overlay.

4.1 Conclusions from GPR and HCP Test Results
GPR scans were conducted on the bridge decks with an old asphalt overlay and on bare
concrete decks after asphalt removal. Their results were also compared to the HCP data for
quantitative analysis.

GPR threshold analysis

Data analysis shows strong linear relationships between GPR data and HCP data collected
on bare concrete, andGPR threshold values can be determined based on the well-established
HCP criteria. Comparison between GPR data collected on asphalt overlay and bare concrete
deck indicates that GPR can be used on asphalt overlaid bridge decks to detect severe
deterioration regions and provide reliable guidance for deck maintenance decision.

Three autoencoders were designed and trained on the GPR and HCP data to model
relationships between them. An autoencoder can eliminate noise from the data and obtain
a clear relationship between two sets of data. Based on the autoencoder results, two sets
of threshold amplitudes were determined for the GPR amplitudes of rebar reflections: (1)
on the asphalt overlay, the GPR amplitude of -8.1 dB and -5.75 dB corresponds to -350
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Table 4.1. GPR threshold amplitudes based on HCP data

Probability of Corrosion based on HCP
Threshold More than 90% Uncertain Less than 10%

GPR on asphalt (dB) < -8.1 [-8.1, -5.75] > -5.75
GPR on concrete (dB) < -6.4 [-6.4, -4.15] > -4.15
HCP on concrete (mV) < -350 [-350, -200] > -200

mV and -200 mV potential in the HCP data, respectively; (2) on the bare concrete, the
GPR amplitude of -6.4 dB and -4.15 dB corresponds to -350 mV and -200 mV potential in
the HCP data. Based on these values, we may choose proper thresholds and color scales
in the GPR amplitude maps to accurately present deteriorated areas. The GPR threshold
corresponding to -200 mv HCP value may indicate incipient deterioration of brige deck.

Table 4.1 shows the GPR threshold amplitudes obtained in this research project. Based
on autoencoder analysis between the GPR and HCP data collected on bare concrete deck,
the GPR amplitude (rebar reflection) threshold is about -6.4 dB, which corresponds to -350
mV in HCP and indicates high possibility of corrosion activities on steel reinforcement.
This threshold is close to the value obtained from previous findings by the authors in the
M075 project [1, 22]. However, there are not enough data points below the -350 mV HCP
threshold in this project. More data should be collected at severe deterioration regions
(HCP < -350 mV) to confirm this threshold value.

GPR effectiveness on asphalt overlay

By comparing the detected deterioration areas from the GPR data collected on the asphalt
overlay and bare concrete (Figure 3.6), we found that both GPR scans detected the most
severe deterioration regions. Purple color on Figure 3.6 indicates agreement in detected
deterioration from two GPR maps (with and without asphalt overlay). The GPR data
collected on asphalt may missed some mild deterioration area. When proper threshold
values are used (e.g. autoencoder analysis from GPR and HCP data), the GPR condition
maps collected on asphalt or concrete surface may provide reliable information about
deterioration areas and guide bridge deck maintenance decision.

Correlation coefficient can be used to evaluate the level of agreement between two
datasets with linear relationship. Correlation coefficient varies between -1 and 1. Values
closer to 0 show less linear relationship. Values close to -1 and 1 are indicative of strong
negative and positive linear relationships, respectively. Quantitative analysis shows that the
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Table 4.2. Correlation coefficient between pairs of NDT data

NDT methods Correlation coefficient
GPR on asphalt - GPR on concrete (Figure 3.7) 0.52
GPR on concrete - HCP on concrete (Figure 3.8) 0.63
GPR on asphalt - HCP on concrete (Figure 3.9) 0.42

correlation between GPR on the asphalt overlay and GPR on the bare concrete deck has a
coefficient of 0.52. For the investigated bridge deck, the GPR amplitude on asphalt shows
a slightly higher attenuation than the data on bare concrete. The correlation coefficient
between GPR and HCP data collected on bare concrete is 0.63, which indicates a clear
correlation between two quantities. GPRdata collected on asphalt overlay andHCPpotential
shows the least linear relationship with the correlation coefficient of 0.42, which is less than
the GPR-HCP correlation for data collected on bare concrete. Table 4.2 summarizes the
correlation coefficients between different pairs of datasets.

4.2 Conclusions from UAV Imaging Results
In this study, the collected images and important features were compared to the GPR and
HCP results to evaluate the effectiveness of UAV imaging in assessment of bridge decks
with asphalt overlay and waterproofing membrane. UAV mounted imaging system was
used as a systematic visual inspection for bridges. UAV imaging system can capture many
localized images from bridge deck surface. Images were later stitched together to produce a
high-resolution imagemap of the entire bridge deck that contains detailed information about
location of surface defects (cracks, spalls, potholes) and other anomalies on the surface.
UAV imaging system can be implemented by the NDOTmaintenance team to fly and collect
data before and after repair of bridge decks. More studies are needed to determine whether
UAV imaging system is an effective predictor of deck repair locations or quantities. After
deck repairs are complete, the area of patches can easily be detected and calculated so that
the DOT engineers can quantify the amount of repair and keep track of the data.

UAV imaging system application

In this study, location of patches were identified with the developed deep learning model.
A UAV image-based big data pipeline has been constructed so that it can be implemented
to multiple bridges. If images can be collected under a controlled data collection scheme
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with full traffic control during inspection, the data quality should improve. For crack
detection, better quality of images can be obtained when UAVs collect images at a lower
height under full traffic control condition. The UAV system can effectively approach
inaccessible locations, such as underneath the bridge deck or bridge piers. Based on the
team’s experience in M075 project, machine vision cameras mounted on a vehicle provided
high quality images. The vehicle mounted system can run at a reasonable speed (up to 30
m/h), which is suitable for fast data collection without traffic control.

UAV imaging system results

Comparing to theGPR andHCP data, we found deterioration is occurring at the proximity of
surface defects including potholes, spallings, and old asphalt patches identified by the UAV
imaging system. However, the total area of surface defects is less than the deterioration
area detected by GPR and HCP. Further quantitative analysis is needed to establish the
relationship between surface defects and severity of deterioration, which may enable us to
use UAV images as an initial screening decision criterion for deploying and extending NDT
inspection of bridge decks.

4.3 Implementation Plan and Future Work
In this research project, theUNL teamconductedmultipleNDT inspections on twoNebraska
bridges with ACC&M during different stages of construction. The results of NDT data
collection in this project indicated effectiveness of GPR on asphalt overlaid bridge decks.
GPR threshold amplitudes were obtained based on correltion analysis between GPR and
HCP data. These thresholds might be applied to future GPR evaluation if recommended
GPR data processing [16] is followed. These threshold amplitudes help identify the quantity
and severity of deteriorated areas based on ASTM D6087 guidelines for HCP. However,
more data is needed to build a more reliable correlation between GPR and HCP for severely
deteriorated areas.

In M075 project, machine vision cameras mounted on a vehicle provided high quality
images. The vehicle mounted imaging system also allows fast data collection without
closing traffic. UAV based imaging can be used as a supplementary method to collect
images at regions hard to access, or the bottom side of bridge decks.

Ground-coupled GPR data collection is usually performed at the walking speed. Air-
coupled GPR is able to scan the bridge deck at the traffic speed. Air-coupled GPR might be
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combined with vehicle-mounted imaging system for fast and comprehensive evaluation of
bridge decks. Because air-coupled GPR has lower spatial resolution than ground-coupled
GPR, further study is needed to collect data with both systems on the same bridges and
compare their performance.

The long-term goal is to implement air-coupled GPR and vehicle-mounted imaging
system for regular bridge deck inspection. The GPR attenuation map and the surface
defects detected from high-resolution images will provide reliable evaluation of bridge
decks.
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