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Abstract 

The strength of the bond between asphalt layers affects the lifespan of pavement structures. It is 
also a key factor in preventing major pavement distresses, such as slippage cracking and 
delamination. This research project evaluates and compares the effectiveness and performance of 
different tack coating approaches to ensure the proper bond strength is achieved in asphalt concrete 
(AC) interlayers through an experimental study. Various tack coat materials, including different 
types of emulsified asphalt and asphalt binders, at multiple application rates and dilution ratios 
were investigated. In the first part of this study, laboratory-prepared samples were used to evaluate 
the sensitivity and effectiveness of the direct shear testing (DST) method, which was selected for 
the characterization of the AC interlayers where different tack coats were treated. Then, emulsified 
asphalts and binders were applied to a field test section by varying application rates. The DST was 
performed under a monotonic loading condition at three different testing temperatures. Interlayer 
shear strengths were used to rank the performance of the tack coats. In addition, cyclic DST was 
conducted to investigate fatigue behavior of the interlayers treated with different tack coats. The 
parameters obtained from the monotonic DST were compared with the fatigue DST results. In 
general, the test results showed superior interlayer performance from CFS-1 and CRS-2P at double 
application rate (i.e., 0.16 gal/yd2 residual application rate) and CFS-1 at the standard application 
rate (i.e., 0.08 gal/yd2 residual application rate). Moreover, CRS-2P provided the shortest breaking 
time among all the emulsified tack coats. With regard to the correlation between the monotonic 
and cyclic DST results, the maximum shear force showed an acceptable correlation with the fatigue 
test results, and the interlayer bond energy, which can also be determined using a monotonic DST, 
is a good (or better) predictor of the fatigue-related shear resistance of the tack coats due to its 
higher correlation with the fatigue test results. 
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CHAPTER 1 
INTRODUCTION 

 
Asphalt concrete (AC) is used in more than 94% of paved roads and highways and plays a 
significant role in the United States transportation infrastructure from both a safety and economic 
perspective; therefore, increasing the durability of asphalt mixtures to prevent major damages and 
deteriorations and minimize the enormous cost of pavement rehabilitation and maintenance has 
been the focus of research studies for many years. Proper design and materials selection are 
imperative to achieving high-quality, long-lasting pavement structures. 

Most asphalt pavement structures are composed of more than one layer, and the layers must 
be bonded together properly. This proper bond is usually achieved using tack coat materials. A 
tack coat is a thin, bituminous liquid asphalt, emulsion, or cutback layer applied between asphalt 
pavement lifts to promote bonding (see Figure 1-1). Adequate bonding between lifts and, 
especially, between the existing road surface and an overlay is critical to ensure the completed 
pavement structure behaves like a single unit with adequate strength.  
 

 
Figure 1-1. Typical tack coat applications. 

Inadequate bonding between the layers can result in delamination (or debonding) followed 
by slippage cracking, longitudinal wheel path cracking, fatigue cracking, and other distresses, such 
as potholes, that greatly reduce pavement life. Additionally, the absence of a proper bond between 
the pavement layers will lead to a considerable loss in the structural capacity of the pavement 
system. Therefore, an adequate interface bond is a key component in the successful pavement 
design and construction process.  

The selection and implementation of the tack coat materials in pavement construction may 
not seem to be a complicated issue, but a variety of factors, including but not limited to the type 
of tack coat materials selected for the project; the application rate; the quality of the application 
materials to the existing layer, which may result in different levels of coverage; the condition of 
the existing surface; and the curing time and conditions, can significantly affect the performance 
of the final pavement structure. Proper tack coat application should result in a thin, uniform coat 
over the pavement surface. However, the application rate varies based on the condition of the 
pavement receiving the tack coat. Too little tack coat can result in inadequate bonding between the 
layers, and too much tack coat may create a lubricated slippage plane between the layers or cause 
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the tack coat material to be drawn into the overlay, negatively affecting the mix properties and 
creating the potential for bleeding within the thin overlay. Table 1-1 shows the typically 
recommended tack coat material application rates for different pavement conditions (Ohio, 2011).  

 
Table 1-1. Typical Application Rates of Tack Coat Materials (Ohio,2001) 

 
Note:  Residual: the application rate of just the asphalt binder content of the emulsion 

Undiluted: the application rate of the undiluted emulsion 
Diluted 1:1 with water: the application rate of an emulsion diluted 1:1 with water 

 
The most common type of asphalt material currently in use for tack coat applications is 

asphalt emulsion. An asphalt emulsion is a combination of an asphalt binder (asphalt cement), 
water, and a very small amount of an emulsifying agent (normally less than 1%). Typical asphalt 
emulsions are 55–70% asphalt binder, depending on the grade of the emulsion. Most grades of the 
asphalt emulsion used for tack coat applications are 60–65% asphalt binder. When the water in the 
emulsion evaporates, the residual asphalt content in the emulsion remains on the pavement surface. 
Typically, an asphalt emulsion commonly used for a tack coat application is approximately two-
thirds asphalt binder and one-third water. A number of different grades of emulsion are used, 
including both rapid- and slow-set-type materials. The most commonly used rapid-set emulsions 
are: RS-1, RS-1h, CRS-1, and CRS-1h. The most common grades of slow-set emulsions are: SS-
1, SS-1h, CSS-1, and CSS-1h. Sometimes, the asphalt emulsion may be polymer-modified for 
high-traffic roadway paving projects.  

Using an asphalt emulsion as a tack coat material is typical in most tack-coating practices; 
however, its application is case-sensitive based on many factors, such as the type and condition of 
the pavement surface, the type of terrain where the pavement is located, and the environmental 
conditions at the time of paving. For instance, if an asphalt emulsion is used for the tack coat and 
if the humidity or ambient temperature is very high, the emulsion setting and curing time must be 
extended. The same is true if the pavement surface is damp from rain. Reducing the residual 
amount of tack coat by 0.01 gal/yd2 or keeping the residual application rate on the lower side of 
the suggested range would also be prudent. A change in the type of tack, from a soft asphalt 
emulsion to a hard asphalt emulsion (SS-1 to SS-1h, for example) should also be considered.  

In some cases, a change from an asphalt emulsion to an asphalt binder may be feasible. 
Asphalt binder can be used for tack material instead of asphalt emulsion. In this instance, the tack 
coat is 100% asphalt cement. The grade of the asphalt binder selected is typically the same as the 
binder incorporated into the asphalt concrete mix. In most cases, the asphalt binder tack coat 
material meets the requirements of a performance-graded (PG) binder (e.g., PG 64-22 or PG 58-
28). 
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Asphalt emulsions, such as CSS-1h have been successfully and widely applied to the 
pavements in Nebraska; however, other alternatives need to be considered in cases where the use 
of an asphalt emulsion could raise issues and is not an optimal approach. In these cases, asphalt 
overlaying with different tack-coating methods than the conventional asphalt emulsion-based 
approach may be considered. Due to their numerous advantages and benefits, thin asphalt overlays 
are becoming increasingly adopted in Nebraska as a promising pavement preservation approach, 
and the thin overlay practice is expected to grow for future projects. The effect of tack coats (in 
particular, the bonding between the layers) is considered particularly significant when a thin lift is 
overlaid on an existing, old (and aged) pavement surface. In addition to the mechanical bonding 
effect, the economical/practical benefits of the thin asphalt overlay are expanded by incorporating 
a faster tack coat application than the typical asphalt emulsion-based approach, which requires a 
significant amount of time for emulsion breaking and curing before a new layer is placed on an 
existing layer. A better engineered tack-coating application method for the thin asphalt overlay 
practice that provides more immediate bonding and faster placement of the tack coat than the 
current emulsion-based method is needed.  
 
1.1 Research Objectives 
Currently, CSS-1h (i.e., cationic asphalt emulsion with slow setting characteristics) is the most 
common type of tack coat emulsion used in Nebraska; it is employed in most of the state’s projects. 
According to the Nebraska Department of Roads (NDOR) specifications (Nebraska, 2007), all tack 
coat emulsion should be diluted by equal volume with water to reach the 30% rate of residual 
binder. Two different application rates are also recommended by the specifications, depending on 
the condition of the existing layer. However, the entire state of Nebraska experiences significant 
seasonal variations in temperature and precipitation as well as different humidity levels, which 
makes the emulsified asphalt curing time an important factor since it could significantly influence 
the duration of asphalt overlay’s construction, which affects traffic delays. Hence, the primary 
objective of this research was to evaluate different tack coating practices for asphalt overlays in 
Nebraska. Therefore, the behavior of several tack coat materials, including various types of 
emulsions and binders with multiple application rates, were evaluated in this study using 
laboratory testing methods on field core samples.  
 
1.2 Organization of Report 

This report includes six chapters. After this introduction, Chapter 2 provides the background and 
a review of studies conducted in the tack coat research area, including the different test methods 
developed to evaluate the interlayer properties of asphalt pavement. Chapter 3 presents the 
materials and testing facilities used in this study as well as the sample fabrication methods of the 
laboratory-prepared testing specimens. Chapter 4 illustrates the field test plan for tack coat 
implementation and a detailed process of the field core samples’ acquisition. Chapter 5 discusses 
the laboratory testing methods and the results used to evaluate the interlayer properties of the core 
samples taken from the field section. Finally, Chapter 6 summarizes the main findings and 
conclusions of this study. 
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CHAPTER 2 
BACKGROUND 

 
2.1 Benefits of Tack Coat Materials 
The adequate bonding of pavement layers is one of the key factors in long-lasting pavement 
structures. It prevents many types of distress in the pavement system. Tack coating is the most 
widely used method to produce a proper bond between new and existing asphalt layers. According 
to the ASTM D8 (2011), Standard Terminology Relating to Materials for Roads and Pavements, 
tack coating is defined as an application of bituminous material to an existing relatively non-
absorptive surface to provide a thorough bond between old and new surfacing. Fully bonded 
pavement layers are not only crucial to prevent the initiation and development of pavement distress, 
but they may also enhance the structural capacity of the whole pavement system because bonded 
pavement reduces the extent of the deflection at the bottom of the layers by holding the layers 
together and making them work as a monolithic system rather than separate structural units.  
 
2.2 Types of Tack Coat 
The most commonly used tack coat materials are emulsified asphalt (also known as asphalt 
emulsion) and asphalt binder; however, the application of binders as tack coats is less common 
than the application of emulsions. An emulsified asphalt is liquid asphalt cement emulsified with 
water and is approximately 60% asphalt and 40% water and an emulsifying agent or emulsifier. 
Emulsified asphalts are classified based on the type of emulsifying agent used to produce them, 
which significantly affects the properties of the emulsions. For example, cationic emulsions with 
positively charged particles are believed to be more compatible with gravel and siliceous 
aggregates, while anionic emulsions with negatively charged particles generally have better 
adhesion on positively charged aggregates, such as limestone. 

Another way to classify emulsified asphalts is based on their setting time (curing time). 
Emulsions are generally divided into three types: rapid setting (RS), medium setting (MS) and 
slow setting (SS), and the curing times increase from rapid-setting to slow-setting materials. As a 
result, tack coat emulsions should be selected based on the types of aggregate used in the asphalt 
mixture production, climate conditions, surface conditions, etc.  

The results from a worldwide survey conducted by the International Bitumen Emulsion 
Federation (2001) show that the most widely used tack coat material is cationic emulsions. In 1988, 
Paul and Scherocman found that slow-setting emulsions are used by almost all the state 
departments of transportation (DOTs). One of the most comprehensive worldwide survey studies 
in the area of tack coat practices was conducted by the National Cooperative Highway Research 
Program (NCHRP) Project 9-40 (Mohammad et al., 2012) and found that asphalt emulsions are 
permitted by all the responding agencies while asphalt cement is only permitted by 27% of the 
respondents. Moreover, the most frequently used emulsions were SS-1 (41%), CSS-1h (41%), SS-
1h (39%), and CSS-1 (37%). PG 64-22 was the most commonly used asphalt binder tack coat. 
 
2.3 Application Rate 
The amount of tack coat applied between the asphalt layers is one of the most significant factors 
in the bond strength of the layer interfaces. Pavement surface condition has been a widely-used 
criterion for the selection of the application rate in many standard manuals and specifications. 
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Generally, overlays in pavements with old asphalt mixtures or milled surfaces require higher 
application rates than surfaces with new asphalt mixtures. In many cases, the dilution of emulsions 
with water prior to spraying is allowed or recommended to enhance the coating capability of the 
emulsion. However, the residual application rate of the asphalt emulsion determines the interlayer 
properties. The residual asphalt content is defined as the amount of remaining asphalt after the 
emulsion has broken and set (all water has evaporated). Therefore, the residual application rate, 
not the application rate of the original or diluted emulsified asphalt, should be considered the target 
parameter to determine the proper application rate.  

The dilution rate may also considerably affect the breaking and setting time. Breaking time 
is usually referred to as the time period in which the water separates from the asphalt cement, while 
the emulsion is “set” when all the water, including the original water and the dilution water, has 
evaporated. The breaking and/or setting time may vary from a few minutes to several hours, 
depending on the type of emulsion, weather conditions (e.g., temperature, wind, moisture level), 
and asphalt surface condition (e.g., types of aggregate or mixture). The distinction of the broken 
and unbroken emulsions is typically based on color. The original color of the asphalt emulsion is 
brown due to the existence of water. As time passes, the material loses the water and turns from 
brown to black. Although there is no general agreement on whether or not placement of the next 
asphalt layer must be delayed to allow the emulsion to set or how long this lapse of time should 
be, Paul and Scherocman (1998) found that many state DOTs specified a minimum time between 
the tack coat application and the placement of the asphalt mixture to provide adequate curing time 
so the emulsion would to break and set. As a result, the curing time delay may become an issue in 
cases in which traffic is obstructed to accommodate the construction process. 

Several studies evaluated the optimum application rate of the tack coat materials to achieve 
the maximum interface bond strength. According to a survey conducted by Paul and Scherocman 
(1998), the residual application rates of the asphalt emulsions were between 0.01 and 0.06 gal/yd2, 
depending on the surface condition. In addition, Asphalt Institute (AI) specifications (1989) state 
that the residual application rate varied, ranging from 0.02 to 0.05 gal/yd2. The NCHRP Project 9-
40 (Mohammad et al., 2012) recommends the residual application rates for different pavement 
surface types (see Table 2-1). 

 
Table 2-1. Recommended Tack Coat Residual Application Rate 

Surface Type Residual Application Rate (gal/yd2) 

New asphalt mixture 0.035 

Old asphalt mixture 0.055 

Milled asphalt mixture 0.055 

Portland cement concrete 0.045 

 
2.4 Tack Coat Related Distresses  
Poor interface bonds between asphalt layers could lead to various types of damage in the pavement 
structure system. Two common tack coat-related distresses are delamination and slippage cracking. 
Delamination occurs when the top layer is separated from the bottom layer due to the lack of a 
proper bond between the layers. Figure 2-1 shows typical delamination damage.  
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Figure 2-1. Delamination distress. 

Slippage cracking (see Figure 2-2) is another common type of tack coat-related distress. 
This distress is caused by sliding the surface layer over the layer beneath it when sufficient shear 
resistance between layers does not exist. This type of cracking occurs in areas where vehicles 
typically accelerate, decelerate, or turn. It may also occur as a result of the non-uniform application 
of tack coat or in the wheel path if the tack coat material is picked up by the tires of haul trucks 
during the construction period. Slippage cracking may also occur if the existing layer is dusty or 
dirty. Poor bonding may also activate and accelerate other types of distress, such as bottom-up 
fatigue cracking. Park (2013) and Tayebali et al. (2004) concluded that pavement failure often 
occurs at the layer interface due to a poor bond between the adjacent asphalt concrete layers. 
 

 
Figure 2-2. Slippage cracking. 

2.5 Test Methods to Evaluate Bond Strength 
Agencies and research groups have developed several laboratory and field test methods during the 
last decade to determine the bond strength of the interlayers. However, it has been challenging in 
many cases to capture the realistic behavior of the tack coat interlayers due to the effects of the 
actual traffic load placed on the pavement. Bond failure at the interface is generally classified into 
three modes (see Figure 2-3): shear failure (Mode A), tensile failure (Mode B), and mixed shear-
tensile failure (Mode C) (Sutanto, 2009). 
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Figure 2-2. Interlayer bond failure modes (Sutanto, 2009). 

The test methods developed to evaluate the bond strength of an interface are categorized 
into two general groups: monotonic loading tests and cyclic loading tests. However, the former is 
more widely implemented than the latter. Monotonic tests can then be subdivided into three 
groups: shear, torsional, and tensile testing. Gierhart and Dietz (2015) summarized the pros and 
cons of each type of test as follows:  

v   Shear Testing: 
•   Laboratory test; 
•   Quick;  
•   Repeatable;  
•   Most widely used; 
•   Uses common laboratory equipment; 
•   Able to clearly rank materials. 

v   Torsional Testing: 
•   Laboratory or field test; 
•   Quick; 
•   Poor repeatability (manual run). 

v   Tensile Testing: 
•   Laboratory or field test; 
•   Quick; 
•   Repeatable; 
•   Able to clearly rank materials. 

 
NCAT Shear Test 
NCAT (2005) has developed a direct shear tester to evaluate the shear strength of tack coat 
materials. The updated version of the NCAT shear fixture (see Figure 2-4) is capable of applying 
horizontal load to the samples. The test is performed on 6-in-diameter (150 mm) samples. The 
thickness of the layers on each side of interface should be no less than 2 in and no larger than 6 in. 
The gap between the specimen holder should be 0.25 in. The test is performed in displacement 
controlled mode with the rate of 2 in (50.8 mm) per minute. The Marshall stability test apparatus 
could be adopted for this test.  
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Figure 2-3. NCAT bond strength fixture. 

Layer-Parallel Direct Shear (LPDS) 
The Swiss Federal Laboratories for Material Testing and Research developed a shear testing device 
called LPDS that is a modified version of device developed in Germany by Leutner (1979). The 
device is used in Swiss Standard SN 671 961. It uses 6-in-diameter samples to apply direct shear 
load at a displacement rate of 2 in (50.8 mm) per minute at a temperature of 20°C.  
 
UTEP Pull-Off Test 
The Texas DOT UTEP Pull-Off Test was developed at the University of Texas at El Paso 
(Deysarkar, 2004). The device measures the tensile strength of the tack coat before the placement 
of an overlay in the field. The device (see Figure 2-5) consists of a plate that is firmly set on the 
tack-coated pavement. A 40-lb load is then placed on top of the equipment for 10 min to set the 
contact plate. After removing the load, torque is applied using a wrench until the contact plate is 
detached from the pavement surface. Finally, the force required to remove the plate from the tack 
coat materials is converted to the strength.  

 

 
Figure 2-4. UTEP pull-off testing device (Deysarkar, 2004). 
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FDOT Shear Tester 
A simple direct shear test was designed as a part of a study done by the Florida DOT (2002). The 
device holds 6-in-diameter specimens since it was believed that 6-in samples would result in less 
variability than 4-in samples. The fixture was also manufactured so the gap between the shearing 
plates is adjustable. The test is run using a loading rate of 2 in per minute at a temperature of 77°F. 
Figure 2-6 displays the Florida DOT shear fixture. 
 

 
Figure 2-5. Florida DOT shearing apparatus. 

 
Torque Bond Test 

The Torque Bond test was initially developed in Sweden for the in-situ testing of asphalt interfaces. 
This method has also been adopted in UK as a part of the approval process for thin surfacing 
pavements. In this test, torque is applied to the top of the sample using a torque wrench connected 
to a steel plate that is glued to the sample’s surface (see Figure 2-7). The force needed for failure 
can then be used to calculate the interlayer bond strength. The test method was originally designed 
to be performed in the field, but the test was later adjusted so it could be conducted in a more 
controlled environment (Choi, 2005).  
 

 
Figure 2-6. Torque bond test (Image from Tashman, 2006). 
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Louisiana Interlayer Shear Strength Tester (LISST)	
  
Another type of direct shear test, referred to as the Louisiana Interlayer Shear Strength Tester 
(LISST) (see Figure 2-8), was developed during the NCHRP Project 9-40 (Mohammad et al., 
2012). The device works similar to the direct shear methods previously mentioned and consists of 
two main parts: a shearing frame that is allowed to move and a fixed reaction frame. The fixture 
holds samples with 100 mm or 150 mm diameters and accommodates sensors to measure the 
vertical and horizontal displacements. A standard testing procedure has been released by AASHTO. 
The standard specifications are based on the results from the use of the LISST device during the 
NCHRP Project 9-40. AASHTO TP 114 (2016) “Provisional Standard Method of Test for 
Determining the Interlayer Shear Strength (ISS) of Asphalt Pavement Layers” recommends using 
a 5.9 in (150-mm) specimen diameter and height above or below the interface, but less than 2 in. 
The displacement rate is 0.1 in per minute, and the gap between the loading and reaction frames is 
1/2 in. The standard does not necessitate the use of confining pressure. However, if required, a 
normal pressure actuator is able to apply up to 30 psi of pressure on the sample. 
 

 
Figure 2-7. Louisiana interlayer shear strength tester (LISST). 

 
Shear Fatigue Test 

Several studies have investigated the behavior of the interlayers under cyclic loading in an attempt 
to determine the interlayer performance under repetitive traffic loading. Romanoschi et al. (2001) 
developed a testing configuration (see Figure 2-9) to determine the shear fatigue behavior of the 
interface. They applied normal force to the samples by placing the specimen with the longitudinal 
axis at an angle with the vertical so that the shear stress at the interface was half the normal stress. 
A haversine vertical load with a frequency of 5 Hz was applied, and the number of cycles that 
produced an increase of 1.0 mm in permanent shear deformation was used as the failure criterion.  
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Figure 2-8. Shear fatigue test (Romanoschi, 2001). 

 
Virginia Shear Fatigue Test	
  

Donovan et al. (2000) used the fatigue shear test to optimize the application rate of the tack coat 
for geo-composite membranes in bridge decks. The test was performed on an interlayer that was 
sandwiched between a Portland cement concrete slab and an asphaltic layer. The test was also 
conducted in a displacement controlled mode using a cyclic shear load of 0.10-seconds haversine 
wave with a deflection of 0.4 mm followed by a rest period of 0.9 seconds. Failure was identified 
when the slope of the applied stress versus the logarithm of the number of cycles reached zero. 
Figure 2-10 illustrates the Virginia shear fatigue test fixture. 

 

 
Figure 2-9. Virginia shear fatigue test fixture (Donovan et al. 2000). 

  



12 
 

CHAPTER 3 
MATERIALS, SAMPLE FABRICATION AND TESTING FACILITIES 

 
3.1 Tack Coat Materials Selection 
According to the Nebraska Department of Roads (NDOR) specifications “Standard Specification 
for Highway Construction,” both anionic and cationic emulsified asphalt can be used as tack coat 
materials, but there is no guideline or requirement regarding the application of asphalt cement as 
a tack coat. However, anionic and cationic emulsified asphalt must meet the AASHTO M 140 and 
AASHTO M 208 requirements, respectively. Cationic emulsions are common tack coats used in 
the state of Nebraska, and CSS-1h is the most widely used tack coat. 

The state of Nebraska experiences significant seasonal variations in temperature and 
precipitation as well as different humidity levels, and the breaking and setting time of the 
emulsions are considerably dependent on environmental conditions. As a result, one of the main 
objectives of this research project was to compare the performance of different types of tack coat 
materials. This study also evaluated the materials’ breaking time and its effect on construction time 
span, which affects traffic delays due to road work activities. 

This study evaluated the effectiveness of the application of five types of materials as tack 
coats for asphalt overlays. The tack coats for this project included: CSS-1h, CRS-2P, CFS-1, PG 
64-22 and PG 64-22 plus a wax additive as a trackless tack coat. Comparing to CSS-1h (slow-
setting type), CRS-2P which is a rapid-setting emulsified asphalt and CFS-1 which is a modified 
CSS-1 to provide a faster set were selected to evaluate the difference in the breaking time in the 
field and to compare their bond behavior as tack coats.  
 
3.2 Application Rates 
According to NDOR specifications, emulsified asphalt should be diluted in the distributor with 
sufficient water to reduce the asphalt content in the mixture to approximately 30% of the total 
volume. Since emulsions are usually supplied at 60% residual asphalt and 40% water, the 
specifications recommend the addition of water to obtain an emulsion with 30% residual asphalt 
content. The application rates designated in the specification are 0.10 to 0.20 gal/yd2 (i.e., 0.45 to 
0.90 L/m2) when applied to existing or milled surfaces and 0.05 to 0.10 gal/yd2 (i.e., 0.23 to 0.45 
L/m2) when applied to freshly laid asphaltic concrete. These application rates recommend a 50% 
dilution (the addition of an equal volume of water to the original emulsion) to acquire a proper 
bond between the new asphalt layer and the existing surface.   

Throughout this research, two main application rates were used in the emulsified tack 
coats: the typical application rate (0.08 gal/yd2) used in most of the state projects and recommended 
by the specifications and double the standard application rate (0.16 gal/yd2) to identify the effect 
of using higher rates than those used in current typical tack coat practices. For asphalt binder tack 
coats, the standard application rate was considered to be achieved when visual observation 
revealed full coverage of the pavement surface. The standard and double application rates were 
also used for asphalt binder tack coats. 
 
3.3 Testing Facilities  

A direct shear testing (DST) fixture manufactured by the PINE company was used to assess the 
bond behavior of the interlayers in shear failure mode. The fixture accommodates 2-in to 6-in-
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diameter specimens using a reducer kit. The fixture consists of a moving frame and a reaction 
frame, and the gap between the frames is adjustable from zero to ¾-in. The normal force kit is also 
capable of applying up to 15 psi of normal pressure to the samples. In the normal force assembly, 
the deformation of a standard spring is recorded using a digital gauge and is then converted to 
force. Figure 3-1 shows the DST fixture used in this study. 
 

 
Figure 3-1. Direct shear fixture. 

 
One factor that could affect the DST results on the field cored samples is the gap width 

between the moving and reaction frames. It is necessary to have enough gap to account for the 
field cored samples having a layer interface plane that is not exactly perpendicular to the side of 
the cylindrical core. If the gap does not exist in the frames and the interface plane is not completely 
perpendicular to the side of sample, a failure surface that is partially out of the interface shear plane 
would occur, which would lead to capturing forces that do not represent the interlayer shear bond 
strength alone. However, a large gap width must be avoided since it would result in flexural stress 
on the sample during shearing, creating a mixed shear-bending failure mode. In this study, a gap 
width of 1/2 in was adopted as recommended by AASHTO TP 114. 

All mechanical tests were conducted using the 25-kN capacity Universal Testing Machine 
(UTM-25kN) shown in Figure 3-2. This equipment is composed of an environmental chamber, a 
central data acquisition system (CDAS), and a hydraulic pressure system. It can produce a 
maximum of 25 kN static and 20 kN of cyclic loading (at various frequencies). The environmental 
chamber can precisely control temperatures ranging from -15 ~ 60°C. However, to ensure an 
accurate temperature reading and guarantee the target testing temperature, a dummy sample with 
an internal thermometer was placed inside the chamber along with the specimens. 
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Figure 3-2. UTM-25kN testing equipment. 

 
3.4 Laboratory-Prepared Samples 

In the first stage of this study, a series of direct shear tests on samples prepared in the laboratory 
was conducted to examine the sensitivity and effectiveness of the testing method and to finally 
determine the testing conditions used in this project. Several testing variables/factors may 
influence the shear bond behavior of the interlayers. The experimental factors used in the first 
stage are summarized in Table 3-1.   

 
Table 3-1. Laboratory-Prepared Experimental Plan 

Experimental Parameters Condition 

Sample Size (in) 4, 6  

Temperature Low, Intermediate 

Normal Pressure (psi) 0, 10  

Tack Coat CSS-1, CFS-1 

Application Rate (gal/yd2) 
(50% dilution) 

0-0.2  

Mixture Type SPR, SLX 
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 The laboratory specimens consisted of two layers with an interface between them. First, 
the plant produced loose asphalt mixtures were reheated in an oven for two hours to the required 
compaction temperature (i.e., 300°F). The first layer was then compacted using the Superpave 
gyratory compactor (SGC) to a height of 2 in with a target air void of 6.0 ± 1.0%. After the first 
layer was removed from the mold and cooled, the sample was placed on a scale and the required 
amount of tack coat at the specified target application rate was applied to the surface of the sample 
(see Figure 3-3). The sample was kept at room temperature until the tack coat was completely 
broken. The emulsified tack coat is considered broken when its color turns from brown to black 
(see Figure 3-4). Two types of curing methods were used to evaluate the effect of wind conditions 
on the breaking time. One set of samples was cured in normal room conditions, while another set 
was cured using a fan to simulate windy weather conditions. The first compacted layer containing 
the tack coat was then placed in a heated SGC mold and a loose mixture was placed on top of tack-
coated bottom layer. The second layer was finally compacted to a height of 2 in (50 mm) with the 
same air void of 6.0 ± 1.0% so that the final height of completed sample was 4 in. Figure 3-5 shows 
the final sample after compaction with the tack coat interlayer between two layers. 
 

 
Figure 3-3. Application of tack coat emulsion. 

 

           
(a)                                                                         (b) 

Figure 3-4. Tack coat emulsion: (a) before breaking, (b) after breaking. 
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Figure 3-5. SGC compacted samples including interlayer. 

 
To evaluate the effect of sample size on the results, both 6-in-diameter and 4-in-diameter 

specimens were obtained. Figure 3-6 exemplifies the 4-in-diameter core specimens taken from 
SGC-compacted 6-in samples.  

 

 
Figure 3-6. 4-in. diameter core samples. 
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CHAPTER 4 
FIELD TEST PLAN 

 
The laboratory-prepared samples and field core-extracted samples will not necessarily lead to 
similar tack coat interlayer behavior results due to many factors, including different mixing and 
compaction methods. In fact, the interlayer shear strength results obtained from NCHRP Project 
9-40 revealed that laboratory-prepared samples containing a tack coat interface could provide 
significantly different, and even misleading results than field cored samples using the same 
materials and the same application rates. Therefore, in this study, cores taken from a field test 
section were employed to evaluate the performance of different tack coat materials in a more 
realistic manner. The field implementation of different types of tack coats was essential to identify 
the period of time needed for the breaking and setting of the emulsions in actual field construction 
conditions. This chapter discusses the field work performed to acquire the core specimens tested. 
 
4.1 Test Section Configuration  

The construction of the pavement test section and tack coating process was conducted in the 
NDOR maintenance yard near Oconto, NE (41°08'01.7"N, 99°45'29.7"W). The test section was 
constructed using two asphaltic layers. The first layer was placed and compacted to the target 
thickness of 2 in a few days before the tack coating stage. The dimensions of the test section were 
23 ft in width and approximately 90 ft in length. The asphalt mixture used in the pavement’s 
construction was the Nebraska SRM mixture, which is a bituminous base mixture typically used 
to replace a hydrated lime slurry-stabilized base and/or cold foam reclamation layer. The whole 
section was then subdivided using paint marking into 14 subsections that were 4 ft wide and 23 ft 
in length. Figure 4-1 shows the configuration of the test section and its subsections. There was also 
a 2-ft gap between each subsection.  

 

         
Figure 4-1. Configuration of field test section. 

 
4.2 Tack Coat Distribution 

Five types of tack coat materials, which can be divided into two general groups of emulsified 
asphalts and asphalt binders, were used in this project. The tack coating process of the test section 
was conducted on September 8, 2016. The air temperature varied from 61°F to 73°F during 
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construction, and the average wind speed was around 9 mph. The method used to distribute the 
materials to the field section and their application rates are discussed in the following subsections.  
 
4.2.1 Emulsion Tack Coats 

Three types of emulsions, CSS-1h, CRS-2P and CFS-1, were used. For CSS-1h, two different 
dilution rates were applied: the 50% dilution rate recommended by the standard specifications and 
a 30% dilution rate (i.e., 70% original emulsion plus 30% additional water). CRS-2P and CFS-1 
were applied without dilution. For each type of emulsion and each dilution rate, two application 
rates were applied: the typical application rate specified in the standards (i.e., standard shooting 
rate) and double the standard application rate (i.e., double shooting rate). Thus, 8 of the 14 
subsections were tack coated using emulsion materials. Since the dimensions of subsections did 
not allow the use of truck distributers during the emulsion application to the pavement surface, the 
emulsion tack coats were applied to the subsections manually. Moreover, to check the application 
rates after the tack coating process, a pad was taped to the pavement along the entire test section 
(see Figure 4-2). The weight of the tack coat material applied to the pad was then calculated by 
simply subtracting the weight of the pad plus the tape from the weight of the pad, tape, and tack 
coat material. The following steps were taken during the tack coating process: 

•   Using the dimensions of each subsection as well as the specific gravity of the emulsions 
provided by supplier, the weight of the emulsified asphalt required to obtain the target 
application rate was calculated; 

•   Using buckets and a scale, the amount of the emulsions measured in the previous step was 
acquired. For the subsections that required dilution, water was added to the emulsions. The 
water and emulsions were mixed thoroughly with the original mixture using a drill (see 
Figure 4-3); 

•   The emulsified asphalt was then evenly spread onto the subsection and distributed using 
brooms and squeegees to cover all the parts of the subsection. Figure 4-4 illustrates the 
distribution of the emulsion tack coats;  

•   Once the subsection was fully covered with the tack coat, the breaking time was recorded. 
The breaking time was considered to be the point at which the emulsions turns from brown 
to black. Figure 4-5 displays the subsections before and after the emulsion breaking. 

 

 
Figure 4-2. A pad placed on surface of field pavement section. 
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Figure 4-3. Dilution of emulsified asphalt. 

 

                
Figure 4-4. Distributing tack coat emulsion on the section. 
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Figure 4-5. Breaking of tack coat emulsions. 

 
4.2.2 Asphalt Binder Tack Coats 
Five sections were tack coated using asphalt binders. Trailer-mounted asphalt spray equipment 
(Figure 4-6a) was used to spray the binder tack coats onto the pavement. Subsections #9 and #10 
were covered by PG 64-22, while subsections #11, #12, and #14 were covered by a wax modified 
PG 64-22 at 330°F. The binder tack coat distribution process included the following steps: 

•   The rate at which the asphalt distributer sprayed the binder was identified. The binder was 
sprayed into a bucket with a known weight for a specified period of time (e.g., 1 minute) 
(see Figure 4-6b). Using the weight of the binder in the bucket, the rate was then calculated 
in terms of kg/min by dividing the weight of the sprayed binder by the time; 

•   To obtain the standard application rate, the specified subsections were tack coated using 
asphalt distributing equipment until full coverage of the subsection was identified using 
visual judgment. The time taken to cover the subsections with binder tack coats was 
recorded. The final application rate was then determined by converting the weight of the 
applied binder to volume. To acquire the double application rate, the binder was applied 
for double the amount of time required from the standard application rate. 

 

           
(a)                                                                  (b) 

Figure 4-6. Asphalt spray equipment used for binder tack coats. 
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Figures 4-7a and 4-7b show the binder tack coat distribution and a final view, respectively. 
One subsection (#14) was tack coated with a wax modified PG 64-22 using the same method of 
distribution that was used for the emulsion tack coats. Subsection #13 was the control section, 
where no tack coat was applied to it. The schematic view of entire test section (all 14 subsections) 
is illustrated in Figure 4-8.  
 

                
(a)   (b) 

Figure 4-7. Distribution of binder tack coats. 

 

 
Figure 4-8. Schematic view of test section (14 subsections). 
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4.3 Paving the Test Section 
After all tack coats were applied, a 2-in-thick SRM asphalt mixture (the same mixture that was 
used in the first layer) was overlaid and compacted (see Figure 4-9).  
 

                
Figure 4-9. Paving the thin lift on the tack coated surface. 

 
4.4 Coring Specimens  
The coring process was conducted one day after the test section was overlaid. To avoid the possible 
effects of the haul truck’s wheel on the performance of the tack coats, all the core samples were 
taken from a part of the section that was located away from the wheel path. Therefore, before cores 
were taken, the coring area within each subsection was marked (see Figure 4-10) and the coring 
was done within that particular area. Core samples in 6-in-diameter were then taken. A total 
number of 258 cores, at least 18 per subsection, were taken. Figure 4-11 presents the coring process 
and the final view of the entire test section after all field cores were extracted.  
 

 
Figure 4-10. Marking coring areas out of wheel path. 
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Figure 4-11. Coring 6-in. diameter samples. 

 
All the cores were then collected, labeled with a paint pen, and transferred to the PI’s 

Materials Laboratory. Before testing each core, the core samples with a height above the interface 
target of 2 in were cut using a wet masonry saw machine to a height of less than 2 in (see Figure 
4-12). The interface in the cores was also marked to ensure an accurate testing process.  
 

           
Figure 4-12. Cutting samples to prepare laboratory testing specimens. 
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CHAPTER 5 
LABORATORY TESTS, RESULTS AND DISSCUSSION 

 
5.1 Monotonic Direct Shear Test 
The direct shear testing fixture described in Chapter 3 was used to conduct the monotonic direct 
shear test (DST) on the samples containing an interlayer with or without tack coat materials. In 
this method, the displacement is applied to the sample at a constant rate and the load is recorded 
continuously during the test until failure occurs. The test was performed in the displacement 
controlled mode at the rate of 0.1 in/min, which is recommended by AASHTO TP 114 (2016). 
The interlayer shear strength (ISS) in MPa can then be calculated as follows: 
 
ISS = !"#$

(&'(/*)
 

where Pmax is the maximum load applied to the specimen and D is the diameter of the specimen.  
 
The interlayer tangential modulus K (N/m3), an indicator of interlayer stiffness, can also be 

determined by diving the shear strength by the corresponding displacement.  
 
5.1.1 Laboratory-Prepared Samples  

Figures 5-1a and 5-1b illustrate the effect of specimen diameter on the maximum shear force and 
the ISS obtained from the monotonic DST with two replicates. The SPR mixture was used to 
prepare the samples, and CSS-1h was applied as the tack coat material at an application rate of 
0.05 gal/yd2 without dilution. The test results showed that the 6-in-diameter samples had a 
maximum shear force higher than about twice the values of the 4-in samples. However, Figure 5-
1b shows that the difference between the shear strength of the 4-in samples and the 6-in samples 
was not very significant. The pre-peak region in the shear strength from the two cases (Figure 5-
1b) was significantly different, implying that different sample sizes could result in very different 
K values. Therefore, the results from different sizes should not be used interchangeably due to 
inconsistent stiffness behavior.   
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 (b) 

Figure 5-1. The effect of sample size on interlayer properties. 

 
The force versus the displacement results at two different temperatures are shown in Figure 

5-2. Two replicates were tested at 5°C to evaluate low temperature behavior, while three replicates 
were tested at 25°C to evaluate intermediate temperature behavior. The SPR mixture and the CSS-
1h at a rate of 0.05 gal/yd2 without dilution were used to produce 4-in testing specimens. Prior to 
testing, the specimens were placed inside the UTM environmental chamber and allowed a 
minimum of four hours to reach temperature equilibrium. The test results shown in the figure 
clearly demonstrate that the temperature noticeably affected the maximum shear force. Another 
main difference observed at the two different testing temperatures was the post-peak behavior of 
the tack coat interlayer. A sudden drop in force was observed at 5°C, while the force decreased 
more gradually before complete failure at the intermediate temperature condition. 

 

 
Figure 5-2. Effect of temperature on interlayer maximum shear force. 
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To evaluate the effect of normal pressure on the interlayer strength, monotonic direct shear 
tests were conducted using 4-in specimens with and without normal pressure. The test results are 
presented in Figure 5-3. The mixture type and CSS-1h application rate were SPR and 0.05 gal/yd2, 
respectively. For the case with normal pressure, 10 psi was applied to the specimens perpendicular 
to the shear force. As illustrated in the figure, the presence of normal pressure generally induced 
slightly increased maximum shear force compared to the case without a normal force applied.  
 

 
Figure 5-3. Effect of normal pressure on shear behavior. 

 
Several studies show that the existence of normal force in a direct shear test increases the 

interlayer shear strength. However, a general agreement on the necessity of including normal 
pressure during the shear test has not been reached. The level of pressure that needs to be applied 
is also debatable since differences in the level of normal pressure could provide completely 
different results. To simulate the realistic condition of the interlayer under actual wheel load, a 0.5 
ratio between the vertical and horizontal forces has been proposed, resulting in a shear stress at the 
interface that is half the normal rate (Salam et al. 1973, Shahin et al. 1987, Romanoschi et al. 2001), 
which could result in a very high level of normal stress (more than 70 psi). However, using high 
levels of normal pressure can be problematic because the pressure may represent the shear strength 
caused primarily by perpendicular confinement, not the bonding from the tack coat materials. 
Therefore, although the shear strength obtained without the application of normal force may not 
be completely appropriate for design and analysis purposes, it would still be useful to check the 
quality of tack coat applications. Since the main purpose of this research is to compare different 
tack coat materials and their applications, direct shear testing without a normal force was thus 
adopted. 

Table 5-1 presents the test parameters used to evaluate the effect of different factors on the 
interlayer properties of the laboratory-prepared samples. The application rates shown in the table 
are the rates of the original emulsified tack coats without dilution. 
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Table 5-1. Testing Parameters 

Mix 
Type Emulsion 

Application Rate (gal/yd2) 

0 0.025 0.05 0.75 0.1 

SPR 
CSS-1  ü ü ü ü 

CFS-1  ü  ü  

SLX 
CSS-1 ü ü ü   

CFS-1 ü ü ü   

 
The test results (i.e., interlayer shear strength, ISS) obtained from the different emulsified 

tack coats are presented in Figures 5-4a and 5-4b. The average results reveal that in the CSS-1 and 
CFS-1 samples with lower application rates, the ISS values were higher for both types of mixtures 
(SPR and SLX). Conversely, in the samples with higher application rates, the CFS-1 sample had 
a higher ISS value than the CSS-1 samples. 
 

 
(a) 

 
 (b) 

Figure 5-4. Effect of tack coat type on interlayer shear strength. 

0.0

0.2

0.4

0.6

0.8

1.0

0.025 0.05

IS
S 

(M
Pa

)

Application Rate gal/yd2

SLX

CSS-1

CFS-1

0.0

0.2

0.4

0.6

0.8

1.0

0.025 0.075

IS
S 

(M
Pa

)

Application Rate gal/yd2

SPR

CSS-1
CFS-1



28 
 

Figures 5-5a and 5-5b also present the average interlayer tangential modulus (K value) of 
two replicates for two tack coats (CFS-1 and CSS-1). The figures reveal that the difference in the 
tangential modulus between the two tack coats on both mixtures (SLX and SPR) was insignificant.   
 

 
(a) 

 
 (b) 

Figure 5-5. Effect of tack coat type on interlayer tangential modulus. 
 
Figures 5-6a and 5-6b show the average estimated ISS values from the two replicates when 

different application rates of CSS-1 and CFS-1 were used, respectively. The ISS values showed a 
decreasing trend for both mixtures when the application rate of the CSS-1 was increased. The most 
noticeable result from these graphs was that the highest values of interlayer strength were obtained 
from the samples without any tack coat. A similar result was also presented in NCHRP Report 712 
(Mohammad et al., 2012). Among the laboratory-prepared specimens, the samples with no tack 
coat exhibited the highest amount of shear strength, which implies that the laboratory-prepared 
specimens’ interlayer behavior may not reflect what occurs in actual field conditions. Nonetheless, 
the testing variability represented by the error bars in Figure 5-6 was generally small among the 
replicates from the laboratory testing samples, which indicates that the laboratory testing method 
adopted to evaluate the tack coats is satisfactory to compare different field cases evaluated in this 
study. 
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(a) 

 
 (b) 

Figure 5-6. Effect of application rate on interlayer shear strength. 
 
Regarding breaking time of tack coats, no significant difference in the breaking time was 

found between the two tack coats, CSS-1 and CFS-1. As shown in Figure 5-7, for samples cured 
in normal conditions (without the presence of wind), increasing the application rates generally 
required more time to break. However, the breaking time for samples cured using a fan (simulating 
windy weather condition) dropped dramatically. In the presence of wind, all samples reached their 
breaking condition within approximately five minutes.  
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Figure 5-7. Emulsion breaking time for SPR mixture. 

 
5.1.2 Field Core Samples 

The initial plan for the field evaluation was to take field cores from a pavement construction site 
where an overlay is placed on the existing milled surface. However, there were concerns that the 
test results on a milled surface may bring misled results toward the evaluation of the effect of the 
tack coat on shear bonding behavior since the rough surface between the milled layer and the new 
overlay may affect the interlayer shear behavior. Therefore, the results may not provide a clear 
comparison between different tack coat materials and applications. To further investigate this issue, 
a few samples were taken from a pavement section that consisted of three layers; two new layers, 
each of which was 2 in thick, and an old milled layer with a thickness of 4.5 in. The direct shear 
test was then performed on the two different testing samples: samples with two new layers and 
samples with a new layer and an old milled layer. Based on the average results shown in Figure 5-
8, the effect of milling on the ISS values was significant. Figure 5-9 also illustrates the interface 
failure on the samples after the test. A very rough failure surface was identified on the samples 
with the milled interlayer as opposed to the very smooth failure surface seen on the samples with 
the non-milled surface. As a result, it was concluded that the non-milled interlayer could be more 
suitable to evaluate the differences in the performance of the tack coat materials subjected to shear 
debonding, as targeted in this study. A corresponding field test plan was developed, and the results 
are discussed in this chapter. 
 

 
Figure 5-8. Effect of milling on interlayer shear strength. 
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(a)                                                                           (b) 
Figure 5-9. Failure surface after DST: (a) sample with milled, (b) sample with non-milled. 

  
Table 5-2 presents the target and final (i.e., residual) application rates obtained from the 

field section. The breaking time of the emulsion tack coats in the field is presented in Figure 5-10. 
An increase in the application rate caused the breaking time to increase, and in some cases, a 
significant difference in breaking time was observed between the different emulsion types. The 
CSS-1h case with a 30% dilution rate and a double application rate (i.e., CSS-1h (70/30) × 2) 
showed the longest breaking time (i.e., 35 min), while the CRS-2P case with a standard application 
rate showed the shortest breaking time (i.e., 5 min). In general, the subsections coated by CRS-2P 
required much shorter breaking times than the other subsections.  
 

Table 5-2. Target Application Rates and Residual Application Rates on Field Sections 

Section 
No 

Tack Coat 
 

Target Application 
Rate (gal/yd2) 

Residual Application 
Rate (gal/yd2) 

1 CSS-1h (50/50) 0.08 0.04 
2 CSS-1h (50/50) × 2 0.16 0.08 
3 CSS-1h (70/30) 0.08 0.056 
4 CSS-1h (70/30) × 2 0.16 0.112 
5 CRS-2P 0.08 0.1 
6 CRS-2P × 2 0.16 0.16 
7 CFS-1 0.08 0.08 
8 CFS-1 × 2 0.16 0.16 
9 PG 64-22 Standard Coverage 0.26 
10 PG 64-22 × 2 Double 0.53 
11 Wax modified PG Standard Coverage 0.26 
12 Wax modified PG × 2 Double 0.52 
13 No Tack - - 
14 Wax modified PG 

(Hand Dis) × 2 
Double 0.69 
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Figure 5-10. Breaking time of emulsified tack coats. 

 
To evaluate and compare the performance of the different tack coat materials and their 

application rates under various conditions, a monotonic direct shear test of the field cored samples 
was performed at three different temperatures: low (5°C), intermediate (25°C), and high (60°C). 
At least three replicates were tested for each temperature. Figures 5-11 and 5-12 show the average 
values of the ISS and K-modulus at the low temperature (5°C), respectively. Based on the shear 
strength results, the best performance was found from CRS-2P at double application rate, followed 
by CFS-1 at double application rate, PG-64-22 with standard coverage, and CFS-1 at the standard 
application rate. The lowest shear strength was found from the subsection without any tack coat, 
which was expected. The subsection with CSS-1h at the standard application rate, which is the 
most typical/conventional tack coat practice in Nebraska, showed the second lowest ISS value, 
after the case without a tack coat. In terms of the K values, CFS-1 and CRS-2P both at the standard 
application rate exhibited the highest moduli, followed by CRS-2P at double application rate. The 
rank order of tack coats with the ISS values was somewhat different from the rank order found 
with the K values. For instance, the subsections coated with asphalt binders showed lower K-
modulus values than other subsections, while their ISS values were greater than many other 
subsections.  
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Figure 5-11. Interlayer shear strength at 5°C. 

 
Figure 5-12. Interlayer tangential modulus at 5°C. 

 
The test results at 25°C are presented in Figures 5-13 and 5-14. At this temperature, the 

highest ISS was found in the CFS-1 case at the standard application rate, followed by CFS-1, CRS-
2P, and CSS-1h at 30% dilution and with double application rates. Increases in the application 
rates of the emulsified tack coats caused a slight increase in shear strengths in the samples with 
CSS-1h at a 30% dilution and CFS-1. However, the shear strength decreased slightly from the 
standard to the double application rate in the CRS-2P samples and remained almost the same in 
the CSS-1h case at a 30% dilution. Therefore, expanding the application rate from standard (single) 
to double resulted in an increase of shear strength at an intermediate temperature condition.  
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Both the shear strength and the tangential shear modulus dropped when the application rate 
of the binder tack coats was increased (see Figure 5-14). This was also observed in the binder tack-
coated samples at the low temperature. This consistent observation suggests that using excessive 
amounts of binder could have negative effects on the interlayer performance due to tack coats. 
Although it is not conclusive at this stage, applying excessive amounts of binder as a tack coat 
may result in the creation of a soft (or lubricating) layer between the two asphalt pavement layers, 
which might cause a loss of interlayer resistance.  
 

 
Figure 5-13. Interlayer shear strength at 25°C. 

 
Figure 5-14. Interlayer tangential modulus at 25°C. 
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Figures 5-15 and 5-16 present the test results at 60°C. The variability of the test results was 
typically higher than the test results at the low and intermediate temperatures. In general, based on 
the ISS results, CFS-1 at double application rate and PG 64-22 with standard coverage exhibited 
the best shear-resistant behavior. Similar to the trend observed at low and intermediate testing 
temperatures, both the ISS and K values decreased as the application rate increased from standard 
coverage to double coverage when the binder tack coat was used. It can also be noted that the 
interlayer bond resistance generally dropped at all temperatures when the wax modified binder at 
a standard application rate was used as a tack coat. However, no consistent behavior was found 
when the wax modified binder was applied at double application rate as bond strength increased 
in the subsection at 60°C, decreased at 5°C, and remained almost the same at 25°C. 
 

 
Figure 5-15. Interlayer shear strength at 60°C. 
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Figure 5-16. Interlayer tangential modulus at 60°C. 

 
To compare the performance of the tack coat materials by considering the results from all 

three temperatures in a more visual manner, the average maximum shear forces obtained from the 
direct shear test at each temperature were normalized to a scale of 1 to 5. The outcome was then 
sorted (as shown in Figure 5-17). The combined averages of the normalized maximum force for 
the three different temperatures were grouped into five based on the percentage calculated from 
the highest value (i.e., 4.85 kN). Overall, the best performing group was found from three cases: 
CFS-1 at double application rate, CRS-2P at double application rate, and CFS-1 at the standard 
application rate. The current conventional practice in Nebraska (CSS-1h (50/50)) was in the 4th 
group, and the case without the tack coat was in the worst-performing group (5th).  
 

 
Figure 5-17. Ranking of tack coats based on average normalized value. 
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5.2 Cyclic Direct Shear Test 
To assess the performance of the tack coat interlayer in a more realistic manner, another approach 
was employed. Performing the direct shear test in the cyclic loading mode can simulate the fatigue 
behavior due to repeated traffic loading. The same fixture that was used for the monotonic direct 
shear test was adopted for this cyclic test. Two linear variable differential transformers (LVDTs) 
were mounted on the fixture to measure the vertical displacement of the specimen during the test 
(see Figure 5-18).  
 

 
Figure 5-18. Cyclic direct test set-up. 

 
The cyclic fatigue test was conducted at one temperature, 25°C. Continuous sinusoidal 

loading was applied using a servo-hydraulic UTM equipment to create cyclic shear stress. All tests 
were performed at a frequency of 10 Hz in a force-controlled loading mode. A 50 N contact load 
was also applied and maintained during the test. A peak force of 0.75 kN was selected to target 
fatigue failure occurred approximately in less than 150,000 cycles. Both force and displacement 
were measured and recorded during each cycle, and a total 25 data points were used to plot each 
cycle. Figure 5-19 shows a typical data acquisition outcome from the cyclic fatigue test. 
 

 
Figure 5-19. A typical data acquisition outcomes from fatigue test. 
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To characterize the fatigue resistance of each tack coat interface, the average from two 
displacements measured by the two LVDTs was used to determine the fatigue failure. Two main 
parameters were considered to signify interlayer fatigue failure. The first criterion selected in this 
study to characterize interlayer fatigue failure resistance was permanent shear deformation (PSD). 
The average accumulated shear deformation acquired from the two LVDTs was recorded during 
the test and reported as a PSD value. Figure 5-20 presents the typical relationship between PSD 
and the number of loading cycles. The PSD graph usually consists of three regions (i.e., primary, 
secondary, and tertiary), as shown in the figure. In the primary region, permanent deformation 
grows fast. Then, the rate decreases to a constant value in the secondary region. Finally, the tertiary 
region shows a dramatic increase in the rate of accumulated deformation. 
 

 
Figure 5-20. PSD vs. loading cycles. 

 
The number of loading cycles at which tertiary flow begins was selected as the failure point 

in the PSD graph. This point is also referred as the Flow Number (FN). Different models have been 
proposed for identifying the FN, including the smoothed central difference model and the Francken 
model. The Francken model was proposed at Arizona State University in 1997 and is considered 
a more reliable approach for computing the deformation rate and the corresponding FN because it 
combines both a power model to characterize the primary and secondary stages and an exponential 
model to fit the tertiary stage. The FN is found by differentiating the permanent strain from the 
loading cycle curve and searching for the minimum value. The Francken model adopted in this 
study is expressed as follows: 
 
up = AnB + C(eDn-1) 
where up is the permanent shear deformation, n is the number of cycles, and A, B, C, and D are 
fitting coefficients.  
 

The fitting coefficients are determined using a nonlinear regression method. For example, 
the cyclic test results of the PSD vs. the loading cycles for subsection #11 and its corresponding 
curve fit based on the Francken model is depicted in Figure 5-21. As seen in the figure, the model 
precisely followed the test results.  
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Figure 5-21. PSD Curve fitting based on Francken model. 

 
The second criterion selected in this study to characterize the interlayer fatigue failure 

resistance was by the interface stiffness (IS), which is described as follows: 
 
IS =  

,-
.×,0

 
where ΔF is the amplitude of the applied shear force, Δu is the amplitude of the measured relative 
displacement, and A is the interface area. 

 
One of the most common fatigue failure criterion adopted in other studies is the point at 

which the specimen stiffness reduced to 50% of the initial stiffness. However, the cyclic test results 
in this study showed that, in many cases particularly those with emulsion tack coats, the samples 
reached 50% of their initial IS right before complete failure (such as complete debonding between 
the two layers). However, in other cases particularly those with binder tack coats, neither the 50% 
loss in IS nor the complete debonding of the layers occurred. In this case, fatigue failure was 
determined at the number of loading cycles at which PSD reached 20 mm. Although the PSD of 
20 mm is an arbitrary value, it is considered an excessive deformation due to repeated loading in 
the pavement. 

Table 5-3 summarizes the average fatigue lifespans from two replicates using each failure 
criterion: Criterion 1—defined as the number of cycles at which the lowest derivative of the PSD 
rate was obtained, and Criterion 2—defined as the number of cycles to reach either 50% IS loss or 
a PSD of 20 mm, whichever was reached first. A comparison between the fatigue damage 
performance of all subsections in the field is also illustrated in Figures 5-22 and 5-23. Both the 
fatigue failure criteria yielded very similar interlayer performance results. However, Criterion 1 
resulted in a lower number of cycles to reach failure for all cases. Figure 5-24 presents how the 
two fatigue failure criteria are related, and it clearly shows that both criteria are quite closely 
related with the R2 value of 0.94. 
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Table 5-3. Fatigue Test Results 

Section 
Number of Cycles to Failure 

Criterion 1 Criterion 2 
Sample 1 Sample 2 Average Sample 1 Sample 2 Average 

1 CSS-1h (50/50) 20,961 9,041 15,001 36,001 18,833 27,417 
2 CSS-1h (50/50) × 2 9,905 6,609 8,257 15,857 10,337 13,097 
3 CSS-1h (70/30) 19,897 11,635 27,588 33,015 22,161 27,588 
4 CSS-1h (70/30) × 2 24,085 33,217 27,062 41,777 55,489 46,348 
5 CRS-2P 17,537 19,553 18,545 30,241 32,001 31,121 
6 CRS-2P × 2 26,785 26,849 26,817 49,249 49,761 49,505 
7 CFS-1 40,321 41,217 40,769 79,361 89,473 84,417 
8 CFS-1 × 2 25,153 32,321 28,737 45,761 48,929 47,345 
9 PG 64-22 31,809 19,489 25,649 53,601 35,873 44,737 

10 PG 64-22 × 2 24,961 17,857 21,409 27,553 20,097 42,393 
11 Wax modified PG 15,878 3,241 9,560 31,046 8,089 23,905 
12 Wax modified PG × 2 3,633 3,321 3,477 8,337 5,409 10,911 
13 No Tack 1,751 1,911 1,831 2,407 3,633 3,020 

14 Wax modified PG 
(Hand Dis) × 2 1,921 1,533 1,727 3,757 3,785 6,500 

 
 
 

 
Figure 5-22. Average fatigue results: Criterion 1. 
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Figure 5-23. Average fatigue results: Criterion 2. 

 

 
Figure 5-24. Relationship between two fatigue failure criteria. 

 
The cyclic fatigue test results show that CFS-1 at the standard application rate (i.e., 

subsection #7) had noticeably better performance than other subsections. Moreover, CSS-1h at a 
30% dilution rate, CRS-2P at double application rate, CFS-1 at double application rate, and PG 
64-22 with standard coverage had very similar fatigue behaviors. The subsection without the tack 
coat and both the subsections coated with the wax modified PG 64-22 exhibited poor resistance to 
fatigue loading. Another notable finding from the cyclic fatigue testing was that, with the exception 
of the subsection coated with PG 64-22 at a standard application rate, all subsection samples coated 
with asphalt binder reached failure by exceeding 20 mm PSD, not based on the IS criterion (i.e., 
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50% loss), which implies that in those cases with the asphalt binder tack coat, the interlayer shear 
strength between the two layers may still remain even after significant deformation. However, all 
the other subsections (containing emulsified tack coats) presented 50% loss in the IS right before 
the two layers’ complete debonding.  
 
5.3 Relationship between Monotonic DST and Cyclic (Fatigue) DST 

Figure 5-25 depicts the performance ranking of all the subsections from the monotonic DST with 
the cyclic (fatigue) DST. Since the number of cycles that led to failure were lower for Criterion 1 
than for Criterion 2 in all subsections, to sort the performance of tack coat materials, the Criterion 
1 (based on FN) was used for the fatigue test ranking, and the maximum shear force was used for 
the monotonic ranking. Figure 5-25 shows that both test methods provided similar performance 
rankings in terms of the best and worst cases. The two best cases were sections #7 and # 8, and the 
two worst cases were sections #13 and #14, and the rank orders were identical in both the tests. 
However, for the other subsections, the two methods presented somewhat different ranking results.  
 

  

Figure 5-25. Comparison between monotonic and fatigue in performance ranking. 

 
The linkage between the tack coat performance results obtained from the two different tests 

(monotonic DST and cyclic DST) are presented in Figure 5-26. The figure depicts the correlations 
between the interlayer maximum shear force (from the monotonic DST) and the fatigue failure 
criteria (from the cyclic DST). The linkage resulted in a higher correlation between the monotonic 
test results and Criterion 1 (R2 value of 0.75) than with Criterion 2 (R2 value of 0.67). Figure 5-27 
illustrates the linkage between the two different tests by relating the interlayer tangential modulus 
and each fatigue failure criterion. The tangential modulus showed a weaker linkage than the 
interlayer maximum shear force with fatigue failure. As shown, the R2 values of 0.67 and 0.58 
were found with each fatigue failure criterion.  
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(a) 

 

 
 (b) 

Figure 5-26. Correlation between maximum shear force and fatigue test results. 

 
 

R² = 0.75

0

1

2

3

4

5

0 10,000 20,000 30,000 40,000

M
ax

im
um

 S
he

ar
 F

or
ce

 (k
N

)

Flow Number (Criterion 1)

R² = 0.67

0

1

2

3

4

5

0 20,000 40,000 60,000 80,000

M
ax

im
um

 S
he

ar
 F

or
ce

 (k
N

)

Cycles to Failure (Criterion 2)



44 
 

 
(a) 

 

 
 (b) 

Figure 5-27. Correlation between tangential modulus and fatigue test results. 

 
The initiation and evolution of fatigue damage is strongly related to the amount of strain 

or deformation caused by loading on the pavement interlayer. Therefore, another parameter; the 
area beneath the load-displacement curve until the peak (Figure 5-28) from the monotonic shear 
test, was also assessed. This parameter, which is denoted as an “interlayer bond energy” in this 
study, accounts for not only the maximum shear force in the interlayer but also the displacement 
associated. It also represents the amount of energy dissipated during the stage where the interlayer 
resists to shearing loading. Thus, it might be interesting to compare this parameter to the fatigue 
damage results. Analysis results are presented in Figure 5-29. As shown, the interlayer bond energy 
was better correlated with the fatigue failure criteria than the interlayer shear strength and the 
tangential shear stiffness. The R2 values were around 0.8. It appears that the interlayer bond energy 
from the monotonic shear test is a good (or better) parameter for the prediction of the fatigue-
related shear resistance of the tack coats based on its higher correlation with the fatigue test results.  
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Figure 5-28. Interlayer bond energy from the force-displacement curve. 

 

 
(a) 

 

 
 (b) 

Figure 5-29. Correlation between interlayer bond energy and fatigue test results.  
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CHAPTER 6 
SUMMARAY AND CONCLUSIONS 

 
The primary objective of this research was to evaluate the engineered tack coating practices in 
Nebraska. An experimental approach was adopted to investigate the performance of different tack 
coating strategies. Various tack coat materials, including slow-setting, rapid-setting, and fast-
setting emulsified asphalt as well as asphalt binder, were selected, and their performance at 
different application and dilution rates was evaluated. In the first part of this study, laboratory-
prepared samples were used to evaluate the sensitivity and effectiveness of the direct shear testing 
(DST) method, which was used to characterize the interlayers with treated tack coats. Then, three 
types of emulsified asphalt and a PG binder, PG 64-22, were applied at different application rates 
to a field-test section. The DST was performed under monotonic loading conditions at three 
different testing temperatures. In addition, the fatigue DST using cyclic loading at an ambient 
temperature was conducted. The testing parameters obtained from the two tests (i.e., monotonic 
DST and cyclic fatigue DST) were compared to evaluate the performance and damage resistance 
potential of the different tack coating practices evaluated in this study. Based on the test-analysis 
results, the following conclusions can be drawn: 

•   Testing in different temperatures revealed that temperature substantially affected the 
resistance of the tack coats, and different interlayer behaviors were observed at different 
temperatures. The samples tested at low temperatures displayed a sudden drop in force 
after peak, as opposed to the gradual drop of force observed at intermediate temperatures; 

•   The effect of milling significantly enhanced the interlayer shear strength; however, due to 
the rough failure surface caused by milling, testing on samples with non-milled surfaces 
seemed to better capture the effect of the tack coats on the interlayer shear; 

•   No significant difference was observed between the CSS-1 and CFS-1 emulsions in terms 
of breaking time. Moreover, as expected, higher application rates resulted in longer 
breaking times in both the laboratory and field samples; 

•   Among the emulsified tack coats tested in this study, CSS-1h at a 30% dilution rate showed 
the longest breaking time in the field, and CRS-2Pshowed the shortest breaking time; 

•   Based on the DST results of the asphalt binder tack coats at all three temperatures, both the 
shear strength and tangential modulus dropped as the application rate rose from standard 
coverage to double coverage, which implies that using more binder than needed could have 
negative effects on the interlayer performance, but this is not conclusive at this stage; 

•   Based on the test results from both the monotonic and cyclic tests, CFS-1 and CRS-2P at 
double application rate (i.e., 0.16 gal/yd2 residual application rate) and the CFS-1 at the 
standard application rate (i.e., 0.08 gal/yd2 residual application rate) showed superior 
interlayer performance when compared to the other cases;  

•   The fatigue and monotonic DST results at 25°C showed an acceptable correlation with 
regard to the maximum shear force, and the interlayer bond energy, which can also be 
identified from the monotonic shear test, is a good (or better) parameter for the prediction 
of the fatigue-related shear resistance of the tack coats based on its higher correlation with 
the fatigue test results; 

•   Although the straight binders or wax modified binders did not turn out as top performers, 
NDOR continues to research trackless tack with binders and adjusting the application rates 
downward as other states are using and having positive results at lower application rates.  
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