
As an iconic grassland species, swift fox are part of what many 

people enjoy about wild western lands. An important character in some Native 

American stories, the famous explorer Captain Meriwether Lewis once called the swift fox 

“remarkable.” Carnivores like foxes are 

remarkable because they help regulate prey 

populations, which is good for other animals, 

plants and people. While swift fox once lived 

throughout western Nebraska, before the 

Nebraska Canid Project, little was known about 

where they live today.  By studying swift fox, we 

hope to learn more about how Nebraska wild 

places are changing. It isn't easy  finding a 

nocturnal animal, but thanks to private 

landowners and students from  the University 

For more information visit us at:   

Working with you to conserve an iconic species on working lands  

Swift foxes are native to 

the Great Plains of 

North America. Once 

common from western 

Canada to Texas, swift 

fox populations have 

declined drastically 

 

In Search of  
the Swift Fox 

Photo credit: NEBRASKAland magazine 



By the numbers 

Historically,  40% of Nebraska was covered in 

the shortgrass prairie habitat that swift fox 

need, but we wanted to know where swift 

fox are today.   

So how do we figure out where foxes live? 

First, we map out potential habitat where we 

could place trail cameras. We set up short 

posts  in front of the camera, which have an 

attractive scent that encourages any nearby 

swift fox and other wildlife to come and 

investigate.  The cameras take a picture 

every time movement is detected, allowing 

us to document the places where swift fox 

and other carnivores live. 

We also want to learn 

more about swift fox 

genetics, which helps us 

understand the health of 

the population.  The scat 

The science and practice of finding foxes  

Since March 

918  unique camera locations 

197 survey sites 

22,670  cumulative survey nights  

How many photos is that? 

5,000,000+ 

Images analyzed so far:  

4,500,000  

We look for swift fox in 

     24  counties, covering  

             26,000+ square 

miles 



We can’t do it without 

you 

Nebraska is more than 97% privately 

owned. Getting permission to search for 

swift fox can be challenging. We’ve 

knocked on doors and made many phone 

calls, eventually receiving permission 

from almost 150 landowners to look for 

swift fox on their farms and ranches. The 

data we collect from private lands are essential for learning where we can still find swift fox in 

Did you know? 

The Nebraska Canid 

project has 

documented photos 

from 19 native mammal 

Many hands make light 

To meet the challenge of finding foxes, the Nebraska Canid 

Project includes a citizen science program that asks 

students and landowners to install trail cameras in areas 

were we suspect swift fox might be. We have found that 

many students and landowners enjoy the opportunity to 

see what animals wander their land when people aren’t 

looking. Almost 100 citizen scientists have attended our 

workshops 

and 

installed cameras, helping us gather important 

information about where swift fox are found in 

Nebraska. 

 

Photo credit: Miranda Wieczorek/Chadron State 



Support for the Nebraska Canid Project comes from: 

Where the wild things are 
We have almost 1,300 photos of swift fox and thousands more of other Nebraska wildlife! 

The counties shaded in green in the map below show where we’ve found swift fox.   

Content and design: Lucia Corral, Caitlyn Gillespie, Michelle Lute 

For more information, or to become a citizen scientist contact: 
Lucia Corral: lcorral@huskers.unl.edu 

TJ Fontaine: jfontaine2@unl.edu 
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BACKGROUND: 
 
Temperate grasslands, such as the prairies of Nebraska, are among the most imperiled 
ecosystems on earth (Hoekstra et al. 2005).  With half the world’s grasslands altered due to 
anthropogenic development and degradation, and less than five percent under preservation 
(Hoekstra et al. 2005), the future of grassland ecosystems remains in question.  In the United 
States, the loss of temperate grasslands exceeds 99% in some areas, with 85% of the remaining 
grasslands in private ownership (Sampson and Knopf 1994).  As a result, the conservation of 
grasslands and the wildlife which rely upon them is highly dependent on private land 
stewardship, as 90% of a species distribution can occur on private lands.   
 
In Nebraska, the loss and degradation of grasslands has significantly impacted many grassland 
species, including the swift fox (Vulpes velox).  A Nebraska Natural Legacy Plan Tier-1 at risk 
species (Schneider et al. 2011), swift fox are estimated to occupy as little as 20-25% of their 
historic range (Sovada et al. 2009); however, despite their Tier-1 status, little is known about the 
true distribution of swift fox.  With increasing interest in developing infrastructure in Western 
Nebraska there is a clear need to document the distribution of swift fox, and identify threats to 
swift fox populations.   
 
Traditional studies of species distribution focus on identifying the habitat attributes, most notably 
vegetation, that best predict the spatial patterns observed in nature.  However, in canid systems, 
there is clear evidence that intraguild interactions play an important role in predicting species 
distribution and habitat use, especially for smaller canid species.  As the largest extant canid in 
the shortgrass prairie, coyote are dominant to swift fox and often cited as an important source of 
mortality.  As such, increases in the abundance and distribution of coyote following the 
development of the western Nebraska may have inadvertently restricted the range of swift fox 
despite the availability of suitable vegetative conditions. 
 
Starting in 2013, the Nebraska Game and Parks Commission, the Nebraska Department of 
Roads, the Nebraska Environmental Trust, and the U.S. Forest Service - Nebraska National 
Forests and Grasslands working in collaboration with the Nebraska Cooperative Fish and 
Wildlife Research Unit, the University of Nebraska-Lincoln and Chadron State College began 
project to document the occurrence of swift fox in Western Nebraska and identify the 
anthropogenic and ecological factors that limit swift fox distribution.   
 
PROJECT OBJECTIVE:   
 

1. Create	a	predictive	map	of	swift	fox	distribution	in	Nebraska	
 
To achieve the overarching objective of the project requires several stages of development to 
secure the appropriate data to develop the outlined species distribution models including 1) 
developing a priori habitat suitability models, 2) securing access to sampling locations based on 
random sampling design, 4) implementing the sampling regime, 5) cataloging camera trap 
photos, 6) analyzing and developing current species distribution models based on ecological 
relationships, and finally 7) share what we are learning with the people of Nebraska.  Below we 
inform the underlying approach of each of stage of project. 
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Figure 1. Ecological niche model for a hypothetical 
species. The AC area represents the geographic region 
with the appropriate set of abiotic conditions for the 
species. BF area is the region where the right 
combination of biotic factors (e.g., interacting species) 
occurs. The light and medium gray shaded areas 
represent the “accessible” areas to the species in some 
ecological sense (M), without barriers to movement 
and colonization, and the fundamental niche (FN). The 
dark gray shaded area is the region that has the right set 
of abiotic and biotic factors and that is accessible to the 
species, and is equivalent to the potential geographic 
distribution of the species. Using distributional 
information (i.e., known occurrences sampled from the 
actual distribution, represented with white asterisks) it 
is possible to identify the geographic extent of the 
realized niche (RN) and the potential distribution of the 
species (Modified from Soberón and Peterson 2005 
and Hirzel and Le Lay 2008). 

 
1)  A priori habitat suitability model 
 
Space-use patterns describe the distribution of 
individuals across habitats, while habitat 
selection refers to an animals’ innate and 
learned behavioral responses that result in the 
disproportionate use of specific habitat types 
(Hutto 1985, Block and Brennan 1993, Jones 
2001).  As such, space-use is the end product 
of the habitat selection processes (Jones 
2001).  To understand the distribution of 
canid populations it is necessary to examine 
space-use patterns and the underlying habitat 
selection mechanisms that drive species-
habitat relationships.  Increasingly empirical 
evidence suggests that many factors (e.g. 
landscape structure, predation and 
competition) influence habitat decision, which 
rarely happens in an “ideal” or “free” fashion 
(Karr and Freemark 1983, Pulliam and 
Danielson 1991, Petit and Petit 1996 in: Jones 
2001).  The general theory of ecology 
presents at least four fundamental principles 
that constitute a basic framework to address 
questions concerning space-use and 
distribution of a species: (i) all species have a 
heterogeneous distribution at some spatial 
scale; (ii) heterogeneous distribution is caused 
and a cause of other ecological processes; (iii) organisms interact with the abiotic and biotic 
environments; and (iv) the ecological properties of species are the results of evolution (Scheiner 
and Willing 2008).  There are, as well, a number of ecological theories (e.g., the theory of habitat 
selection, the ideal free distribution theory, the theory of optimal foraging, and the metabolic 
theory) considered relevant in explaining spatial patterns; however, one of the central ideas 
related to what causes species distribution and use of space is the species niche concept. 
 
In general terms, the ecological niche of a species refers to the range of conditions and resources 
where the species can survive and reproduce based on physiological and morphological 
adaptations (Stearns 1992) such that differences among species niches (either their requirements 
or their impacts or both) determine the outcome of species interactions, species distribution and 
abundance, as well as the functional role of species in ecosystems (Chase and Leibold 2003).  In 
other words, ecological niche theory predicts that critical characteristics of species’ biology, such 
as physiology, feeding ecology, and reproductive behavior, define the fundamental ecological 
niche (Hutchinson 1957, Hutchison 1978), and that there should be a strong relationship between 
a species’ actual space use and distribution, and the environmental conditions which describe the 
species’ realized niche (Fig.1, Hutchinson 1957, Soberón and Peterson 2005, Araújo and Guisan 
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2006).  Accordingly, we expect species to be present in areas where the abiotic conditions are 
favorable (i.e., density-independent fitness is positive), an appropriate suite of species is present 
(e.g., prey and other food resources) and absent (e.g., competitors and predators), and the areas 
are accessible to the species (i.e., no dispersal limitation, Soberón and Peterson 2005). 
 
Swift foxes live in the same habitat year-around and are strongly den dependent (Carby 1998, 
Dark-Smiley and Keinath 2003), placing dens in easily excavated sandy and friable soil (Hines 
and Case 1991, Pruss 1999).  Swift foxes often associate den sites with roads, potentially to 
minimize encounters with coyotes, which tend to avoid roads and human contact (Hines and 
Case 1991, Pruss 1999).  Swift foxes prefer open and flat shortgrass and mixed grass prairies 
with sparse vegetation, habitat conditions that presumably improve visibility to avoid predators 
(Dark-Smiley and Keinath 2003).  Therefore, we expect higher occupancy by swift foxes in 
relatively flat areas (i.e., < 10% of slope) of shortgrass and mixed grass prairies such that swift 
fox occupancy increases when the percentage of suitable prairie landscapes increases.  Similarly, 
because swift foxes select areas with short and sparse vegetation, we also expect to find them in 
heavily grazed pastures or fallow cultivated lands adjacent to shortgrass prairies (Carbyn 1998, 
Sovada et al. 1998). 
 
Habitat suitability for swift fox is also related to prey availability, particularly small mammals, 
and den availability, which are generally constructed by other fossorial mammals such as prairie 
dogs (Cynomys ludovicianus), ground squirrels (Spermophilus spp.), and American badgers 
(Taxidea taxus) that swift foxes then modify (Carbyn 1998).  Therefore, we expect higher 
occupancy and detection probability of swift fox in areas with well-drained friable and sandy-
loamy soils also occupied by prairie dogs, ground squirrels and badgers (Hines and Case 1991).   

 
To develop a predictive habitat suitability model for swift fox, we conducted an extensive 
literature review to identify key habitat structure and landscape predictors of species occurrence 
and abundance. Using the best available information on species habitat needs, we used 
geographic information systems (GIS) tools to correlate known vegetative associations and 
landscape characteristics from the literature with available landcover data.  
 
Using the predicted habitat suitability model as a base layer we divide the study area into grids of 
31 km2 (Following Findley et al. 2005), which will allow us to potentially identify individual 
foxes in the site and be able to estimate number of foxes in a particular area.  Swift fox home 
ranges in Nebraska average 32.3 km2 for males and 27.5 km2 for females (Hines and Case 1991) 
although these estimates are larger than other found in the literature –7.6 km2 in Colorado 
(Kitchen et al. 1999) and 11.7 km2 in Wyoming (Pechacek et al. 2000).  Using a 31 km2 grid we 
are able to sample swift foxes over a large geographic area and compare our results with studies 
conducted in other areas within swift fox distribution range (Finley et al. 2005; Martin et al. 
2007; Stratman 2012).  We classified the grids by the percentage of potential suitable habitat.  A 
grid was defined as “suitable” if it was composed of ≥ 25% suitable landcover (i.e., shortgrass 
and mixed grass prairie) and ≥ 45% suitable slope (i.e., < 10% of slope) because they are habitat 
characteristics that reliably predicts occupancy and detection of swift foxes (Findley et al. 2005, 
Martin et al. 2007, Knox and Grenier 2011).  Then, we used the Create Spatially Balanced Points 
tool, an ArcGIS 10.0 Geostatistical Analyst extension by Esri, to select 100 locations from all 
available grids.  
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Figure 2. Swift fox a priori habitat suitability model with locations of sampling sites based on a balanced 
sampling design.  Large dots represent locations where either swift fox were reported or confirmed with camera 
traps. 

The Spatially Balanced Points tool was developed based on the Reverse Randomized Quadrant-
Recursive Raster algorithm (Stevens and Olsen 2004) that is used to map two-dimensional space 
into a one-dimensional space in which successive samples are randomly and spatially balanced 
according to an unequal inclusion probability of the grids.  The Reverse Randomized Quadrant-
Recursive Raster algorithm works in a three-step process that includes: generating a sequence 
grid or raster, filtering the sequence generated against a probabilistic grid (i.e., probability of 
observing the target species in a specific location), and generating sample site locations (ESRI 
2010).  In this way the grids were selected based on perceived importance relative to other 
locations in the raster.  
 

Spatially Balanced Sampling selects sample points by taking into account the potential spatial 
pattern of the population and optimizing the sampling based on the probability of observing a 
target species in a specific point.  Spatially Balanced Sampling is intended to provide more 
information per sampling unit with less spatial autocorrelation effects (Theobald and Norman 
2006) while allowing for flexibility in survey design, so that if there is a need to remove a 
location form the survey, a new one will replace it with another replicate of the site, conserving 
the randomness and spatial balanced qualities (i.e., it makes it possible to update sample 
locations according to accessibility of the sites, budget, etc.). 
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2) Private and public lands access 

 
Because of the geographic scope of the project, a great deal of effort was necessary to secure 
access to the 100 study sites defined by the random sampling design.  Beginning in December, 
2013, we sent letters to more than 200 private landowners.  Using public databases of 
landownership, landowners were selected if they owned property within any of the 100, 31 km2 
sampling grid.  The letter acted as a first round of contact, and was followed by a phone call 
requesting access to place camera traps.  Acceptance rates were low, access was not available at 
all random sites.  As such we generated replacement sites (see above for protocol) and sent an 
additional letter to potential landowners, again followed by a phone call.  To facilitate landowner 
engagement and information transfer, we developed a website (swiftfox.unl.edu) outlining the 
overall objectives of the project.  The website acts as means to help landowners understand the 
project and provides them information on the researchers and collaborators that are involved as 
well as the protocols we use for setting up cameras. 
 
In addition to private lands, we also secured permission to sample for canids on public lands.  
This included securing permissions and associated permits from Nebraska Game and Parks, U.S. 
Forest Service, the U.S. Fish and Wildlife Service, and U.S. National Park Service. 
 
In total we secured public and private permission from 130 landowners to sample nearly 200 
sites within the study area.   
 
3) Sampling 
 
To assess the presence and relative abundance of various 
canid species, we employed a standardized camera trap 
protocol.  Surveys were conducted two times per year to 
coincide with two main seasons: (i) breeding season 
between February and June to detect resident adults, 
because the persistence of swift fox populations depends 
on the distribution and abundance of breeding adults; and 
(ii) during juvenile dispersal between September and 
November, in an attempt to maximize detection 
probabilities (Finley et al. 2005, Martin et al. 2007) 
because during the fall pups forage on their own, 
juveniles start to disperse, and adults are more active and 
range farther from the den (Olson et al. 2003).  
 
We used an array of 5-10 trail cameras (Bushnell Trophy 
Cam HD and Moultrie M-880) within each 31 km2 
sampling location.  The cameras were hung on posts 40 
cm above ground and deployed to take advantage of the 
presence of fences, posts, gates, intersections, etc., 
because canids tend to travel using such landscape 
features.  A wooden stake was placed 3 m from each camera exposed 40 cm above the ground to 

Figure 3. Example of camera trap effort 
within a sampling location and the 
appropriate method of camera deployment.
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serve as a base for the lure as well as a focal point for the camera and a metric for estimating 
animal body size.  The lure consists of approximately 15 ml of a skunk-based attractant produced 
by heating 385 ml of petroleum jelly to liquid form, adding 15 ml of skunk essence (F&T Fur 
Harvester’s  Trading Post, Alpena, MI), and allowing the lure to solidify.  Cameras were set up 
to take bursts of 3 photographs no less than 5 seconds apart each time motion and/or heat 
signature is detected and left for 10 consecutive nights as this maximizes the trade-off between 
detection probability (i.e., reducing false negatives) and sampling time. 
 
Starting in April 2014, we began deploying 
camera traps across the western third of Nebraska.  
In the spring of 2014, we deployed 455 cameras 
on 108 sites.  We increased our effort in the fall of 
2014 and we were able to deploy 804 cameras on 
187 sites.  During 2015 we deployed a total of 
1,422 cameras (spring and fall) surveying at the 
same sites 2014.  We deployed a total of 2,267 
cameras representing 197 survey sites across two 
seasons (spring and fall) for two years (2014 and 
2015).  From these cameras we have collected 
nearly more than 5 million images representing 
22,670 trap nights.  At each site we also conducted 
vegetation and infrastructure assessments.   
 
4) Photo catalog 
 
To associate occupancy with ecological conditions, all pictures were downloaded and captures 
recorded by species, as well as GPS coordinates, location and habitat code, and total number of 
photos taken for each camera.  The resulting data for each camera is recorded as detection 
histories; i.e., vectors of 1’s and 0’s, where “1” represents that at least one individual was 
detected and a “0” the failure to detect any individual during the survey.  The binary database 

forms the basis to develop predictive models that 
relate the occurrence of all canid species with 
habitat attributes the distribution of other canids. 
 
We have cataloged data to collect information not 
only on swift fox, but a suite of species commonly 
attracted to scent stations.  We have cataloged 
nearly 5 million photos and entered data on 
occupancy for twenty different species, including 
confirmed locations for swift fox (Figure 2).   

 
5) Current species distribution model 
 
Predictive models of species distribution (i.e., Species Distribution Models – SDM) have become 
an increasingly important tool to study distribution patterns and the processes that predict species 
occurrence (Guisan and Thuiller 2005).  Species distribution models are low-dimensional 

Figure 5. Coyote caught on a camera trap in 
northwest Nebraska. 

 
 

Figure 4. Camera trap being deployed by graduate 
student Lucia Corral on private land in northwest 
Nebraska. 



 

 viii

abstractions that describe empirical correlations between species occurrence or abundance and 
environmental variables.  SDMs are constructed in accordance with ecological knowledge of the 
factors limiting species occurrence (Scott et al. 2002, Franklin 2009).  Therefore, one of the 
outcomes of SDM is a characterization of the species niche, because we use data on actual 
species occurrence to produce the models and then extrapolate the results in geographical space.  
Once the realized niche for the species is described and modeled, it can be mapped to produce 
potential distribution or habitat suitability maps (Franklin 2009), and subsequently used to 
predict the likelihood that a species occurs at a location (i.e., the probability of the species 
presence in an area).   
 
Model Development  
 
We used occurrence data of swift fox from camera trap surveys conducted in 2014 and 2015.  
The resulting data for each camera was recorded as detection histories (i.e., vectors of 1’s and 
0’s, where “1” represents that at least one individual was detected and a “0” the failure to detect 
any individual during the survey). The data on presence/absence of swift fox was the response 
variable for our analysis, while the data on environmental and landscape characteristics at each 
location formed the basis of the explanatory variables.  
 
The explanatory or predictor variables were chosen to represent characteristics of the landscape 
and climatic conditions likely to be important determinants of the distribution of swift foxes. 
Climatic variables were obtained from the WorldClim database (Hijmans, et al. 2005, 
O’Donnell, et al. 2012), which provides a variety of climatic data averaged over the years 1950-
2000 converted into 19 bioclimatic variables. Because the Worldclim variables are derived from 
a common set of temperature and precipitation data, they present strong multicollinearity.  
Therefore, before selecting the variables, we created a Spearman rank correlation matrix to 
explore the relationships between the 19 variables. We removed all the variables that were 
significantly correlated (Spearman rho > 0.50, p < 0.01) and that were less likely to be 
biologically significant in contributing to or limiting swift fox. We used four bioclimatic 
variables in modeling: annual mean temperature, temperature annual range, annual precipitation 
and precipitation coefficient of variation (see http://www.worldclim.org/bioclim).  
 
The landscape variables were obtained from landcover, soil type and slope layers. Shortgrass 
prairie and flat terrains are reliable predictors for probability of occupancy and detection of swift 
foxes (Findley et al. 2005, Martin et al. 2007, Knox and Grenier 2011, Stratman 2012). We used 
the landcover data set developed by the Rainwater Basin Joint Venture landcover (version 10.1) 
and modified later by NGPC (2013). The soil type layer was based on the Soils of Nebraska map 
published by the Natural Resources Conservation Service (NRCS) of the United Stated 
Department of Agriculture (USDA). This map presents the main soil associations of the state 
directly related to topographic characteristics of each area. Finally, we created a slope layer from 
the Nebraska Digital Elevation Model (DEM) using the slope function from ArcToolbox 
(ArcGIS 10.3.1). The slope function calculates the maximum rate of change from every cell to its 
neighbors, in degrees (0-90), which is a measure of vertical rise over the horizontal run.  
All layers were modified so that each data set layer had the same spatial resolution, extent, and 
projection (coordinate reference system). We use ArcGIS Spatial Analyst resampling function to 
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perform a nearest neighbor analysis to match all layers to the coarsest resolution (~ 1km) from 
input datasets. 
 
We used Zero-inflated Generalized Linear Mixed Models to assess the relationships between 
swift fox presence/absence and the explanatory variables. Our modeling approach was chosen 
because it is suitable for overdispersed data due to an excess of zero values, allows the analysis 
of multilevel data structure (e.g., repeated measures), accounts for temporal and spatial 
correlation between the observations, includes fixed and random effects, allows for a response 
variable with a binomial distribution (i.e., presence/absence), and predictors variables can be 
either categorical, numerical or both (Zuur et al. 2009, 2012).  
 
We assumed that (1) the source of zeros in our data is structural (structural zeros), which means 
they represent positive zeros, true zeros, or true negatives that are not due to the difficulty to 
detect swift foxes, and (2) the logit of the “success” or positive detection probability is linearly 
related to the predictor variable. 
 
We used an information-theoretic approach to examine which variables are important 
determinants of swift fox distribution and to identify a suitable and parsimonious approximating 
model. We used Akaike information criterion (AIC) to select the “best model” from a multiple 
model comparisons. The “best” model chosen was: 
 

logit(pij) =  + 1 + 2  coverij + 5  temp_amij + 6  temp_arij + 7  prec_asij + 
8  prec_cvij + ai 
ai  N(0, 2

a) 
 

Where logit stands for the logistic link, pij is the probability that a swift fox j is present on a 
location i (loc_id), coverij  is the landcover,  temp_amij is the annual mean temperature, temp_arij 
is the annual range temperature, prec_asij is the annual precipitation, and prec_cvij is the 
precipitation coefficient of variation. All predictor variables considered fixed effect, and ai is the 
random intercept. Since the same camera-trap location was surveyed repeatedly, the location 
(loc_id) was used as random effect.  
 
We used the glmm function from glmmADMB package (version 0.6.5) in R (version 3.2.2), built 
on the open source AD Model Builder nonlinear fitting engine, for fitting generalized linear 
mixed models. We then made predictions using the glmm object and created a raster object with 
predictions from the fitted model to be able to visualize occurrence probabilities (Figure 6). 
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Model Evaluation 
 
To evaluate the quality of the predictions, we calculated six threshold dependent metrics (see 
below) and compared four different methods to select the optimal thresholds (Table 1). All 
accuracy metrics were obtained using the PresenceAbsence package in R (version 3.2.2).  Model 
accuracy metrics: 
 

1. Percent Correctly Classified – overall predictive capability 
2. Omission – failure to predict true presence 
3. Commission – over-prediction of presence 
4. Sensitivity – ability to predict true presence 
5. Specificity – ability to predict true absence 
6. Prevalence – refers to species frequency (presence) 

 
Table 1. Estimates of optimal thresholds values 

Methods for threshold selection       Threshold 

Mean occurrence prediction a 0.22 

10% omission b 0.10 

Sensitivity = Specificity c 0.15 

Max. Sensitivity + Specificity d 0.14 
a. the mean prediction for the occurrence (presence) records 
b. the threshold that excludes approx. 10 percent of the occurrence records 
c. the threshold value or range in values where sensitivity is equal to sensitivity 
d. the threshold value or range in values that maximizes sensitivity plus specificity 

 
The estimates obtained for Percent Correctly Classified (53-84%), omission (88-93%), and 
commission (0-2%) suggest a relatively poor performing model. As most of our data reflect 
locations where swift fox are not present (numerous zeros in the input data) our model performs 
relatively well when predicting zeros, but only because the low prevalence of swift fox (0.14-
0.30) makes it likely that any place surveyed will not contain a fox. Subsequently, the low 
numbers of presence data were nearly impossible to predict given our predictors and model 
structure (9-11% correctly predicted presences). This means the current model is not a reliable 
model to accurately predict the presence of swift fox, but it is extremely accurate in showing 
where foxes are not. This preliminary output is not surprising considering that the model is 
strongly influenced by the low occurrence of swift fox (84 presence / 2282 absences).  Because 
swift fox is a species of concern, errors of omission are extremely important, and therefore we 
should interpret and use the predicted distribution map cautiously. It is crucial to take into 
consideration that (1) the predictive map is a static product in space and time, (2) the model 
selected is subject to several assumptions and dependent on the predictor variables used, and (3) 
the current validation is subject to the selected thresholds. 
 
Our poorly-fitting model may indicate: 
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1) The assumptions of model family fitted (zero-inflated binomial) may not accurately 
reflect the structure of the data; our model fitting procedure assumed a single constant 
value for zero-inflation across the dataset which may not be a valid assumption. 
 
2) Our selected predictors cannot adequately separate presences from absences, either 
because they are unrelated to the presence of swift fox or because the functional form of 
the relationship (linear) was inappropriate. 
 
3) We are missing important predictor variables that would explain swift fox distribution 
patterns.  

 
We will continue to improve the model by revaluating the predictor variables selected and 
evaluating new variables (e.g., percent of each type of landcover). Additionally, we will 
investigate non-linear relationships using models that offer greater flexibility in the modeled 
relationships (e.g., generalized additive models). Furthermore, we will explore machine learning 
methods (e.g., classification trees and random forest), which may be suited for modeling rare 
species and can potentially offer improvements to predictive accuracy. 
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