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NOTE: This report preferentially uses the term ‘crash’ to refer to a vehicular/train collision
resulting in property damage and/or injuries and fatalities. However, the term ‘accident’ is also
used when referring to legacy items (e.g., US DOT Accident Prediction Model) or when

referencing or quoting published literature.
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Abstract

The research objectives of this project were to update Nebraska Department of
Transportation (NDOT) 1999 Nebraska Accident Prediction Model for Highway-Rail Grade
Crossings (HRGCs) and to develop guidelines using Lancaster County Nebraska HRGCs for
improving safety at urban gated HRGCs that are not designated quiet zones but are in the vicinity
of quiet zone crossings.

FRA crash and HRGC inventory data were utilized for estimation of the new model after
inventory information on 742 HRGCs was updated. HRGC crashes for 2008-2018 period were
used for model estimation while 2019 HRGC crashes were used for model prediction validation.
After consideration of several different model formulations, a Poisson regression model with
scaled parameters was selected as the 2020 Nebraska HRGC Crash Prediction Model.

Lancaster County HRGCs consistency assessment was performed using Federal Railroad
Administration’s (FRA) Quiet Zone Calculator to analyze gated non-quiet zone HRGCs that are
in proximity of designated quiet zone HRGCs. The general guidance on achieving a more
consistent driving experience at such HRGCs is to consider the use of Supplemental Safety
Measures including the use of mountable medians with reflective traffic channelization devices
(vertical panels or tubular delineators) or non-traversable curb medians with or without
channelization devices at non-quiet zone gated HRGCs that are in proximity of established quiet
zones. A complete update of the statewide HRGC inventory is recommended to remove errors

and missing values from the existing database.
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Chapter 1 Introduction

1.1 Background

Highway-rail crossings are junctions between the rail and the highway network where the
two meet. More than 97% of these crossings are at the same level (at-grade) in the US; such
crossings are commonly referred to as highway-rail grade crossings (HRGCs). While trains have
the right-of-way at HRGCs, every year there are a number of reported crashes when motor
vehicles and other highway users fail to yield the right-of-way to trains. Motor-vehicle involved
crashes at railroad crossings are invariably more severe compared to crashes on the rest of the
surface transportation network mainly due to train involvement. In 2019, the number of crashes
reported in the US at HRGCs was 2,220 resulting in 294 fatalities; fatal crashes were 13.24% of
total reported incidents (Federal Railroad Administration 2020). During the same year, Nebraska
accounted for 29 crashes at HRGCs involving 6 fatalities and 18 non-fatal injuries; fatal crashes
were 17.24% of total reported crashes.

Rail crossing safety models based on reported crash data have provided an understanding
of crash phenomenon at HRGCs, identifying associated factors in an attempt to improve safety,
and for ranking competing rail crossings for safety improvement resource allocations. The
Nebraska Department of Transportation (NDOT) currently utilizes the 1999 Nebraska Accident
Prediction Model (HNTB, 1999) for rail crossings to identify and rank crossings that may need
scrutiny and perhaps subsequent safety improvements. Developed by the Midwest Research
Institute (under contract to HNTB Corp.) in 1999, this crash prediction model was based on 5-
year rail crossing crashes and inventory data from September 1993 through August 1998. It
updated the previously used 1973 Nebraska Department of Roads (NDOR) Hazard Index, which

was a modified version of the NCHRP Report 50 Formula (NCHRP Report 50, 1968). The



model over-predicts (about 10%), and results may not be optimal as many changes have occurred
in terms of train and motor vehicle traffic, crash trends, and rail crossing inventory information
since its adoption. Other state DOTs have recently updated their rail crossing crash prediction
models or are in the process of doing so. Given the newly available statistical modeling
approaches and the availability of a relatively large dataset, the hope is that the updated model
will outperform the existing NDOT Nebraska Accident Prediction Model for rail crossings.
Furthermore, recent crashes reported at urban rail crossings in Nebraska call for a review
of motor vehicle driver expectancy in terms of installed supplemental safety measures (e.g., 6-
inch high mountable barriers along roadway centerlines to prevent passing around crossing
gates). Installation of supplemental safety measures or alternative safety measures is an FRA
requirement when public agencies apply for Quiet Zone designation (crossings where trains are
not required to sound horns). For example, some crossings in Lincoln, Nebraska are Quiet Zones,
but other proximate crossings are not designated as such. This creates a situation where drivers
may expect supplemental safety measures at all crossings and their expectations violated when
using crossings not designated as Quiet Zones. An example is the August 18, 2017 crash at S.
Folsom St. (Lincoln, Nebraska) crossing (USDOT ID: 083044D) that claimed the lives of two
high school students. The victim in this crash attempted to pass around the lowered crossing
gates while an Amtrak train was on its way toward the crossing. The presence of a barrier along
the roadway centerline (a supplemental safety measure) would likely have prevented this crash.
Therefore, there may be merit in installing supplemental safety measures at select urban
crossings that are not Quiet Zones but have crossings designated as Quiet Zones in the general

vicinity.



1.2 Objectives

There were two objectives for this research: 1) to update NDOT’s 1999 Nebraska
Accident Prediction Model for rail crossings using the latest crash and rail crossing inventory
data, and 2) to develop guidelines for improving safety (via uniformity of driver expectations) at
urban rail crossings that are not designated quiet zones but are in the vicinity of existing quiet
zone crossings. HRGC:s located in Lancaster County, Nebraska were candidates for the second
objective.

It was hoped that a newly developed crash prediction model that will outperform the
1999 Nebraska Accident Prediction Model for rail crossings thereby allowing for more informed
decisions regarding resource allocation for rail crossings. Guidelines for improving safety of
urban crossings that are not quiet zone crossings will enable Nebraska public agencies to
improve public safety and reduce possible liability from crashes at HRGCs.

1.3 Research Qutline

This research comprised of five tasks; the first was a meeting with the project Technical
Advisory Committee (TAC) to discuss the research approach and review of published literature
on rail crossing safety conducted with an emphasis on crash prediction models for rail crossings.
Chapter 2 of this report presents a summary of the reviewed publications pertinent to this
research. Chapter 3, the methodology, provides details about the statistical techniques utilized in
this research. Chapter 4 presents research efforts regarding data acquisition and average annual
daily traffic (AADT) data update, including a 12-year (2008-2019) crash data set and the public
crossing inventory from FRA. While some AADT data were out-of-date, the research team
provided updated AADT values. Chapter 5 presents estimated statistical models on the expected

number of HRGC crashes per year in Nebraska. Various factors were taken into consideration



with regards to their effects on crash occurrence at rail crossings, such as crossing characteristics,
exposure measures, land use, etc. Chapter 6 provides an assessment of installed supplemental
safety measures at urban crossings in Lancaster County that are not designated as quiet zones.
Lastly, major findings from this research and conclusions are presented in Chapter 7. Guidelines
on improving safety through installing supplemental safety measures at urban rail crossings are

provided in Chapter 7 as well.



Chapter 2 Literature Review

The latest guidance on HRGCs including safety engineering treatments are available in
the Highway-Rail Crossing Handbook 3" Edition (Ogden and Cooper, 2020). Besides providing
general information on HRGCs, this handbook also summarizes current best practices and
provides options for safety enhancements at HRGCs. It provides guidance on how existing
standards and recommended practices may be applied in developing safe and effective treatments
for HRGCs.
The US Department of Transportation (DOT) Accident Prediction Model is a widely used hazard
ranking model, currently used in 19 states for HRGC hazard ranking. Many states (e.g., Texas,
Florida) have assessed the adequacy of HRGC hazard ranking models and/or developed new
statistical models for hazard ranking. Other states, including Illinois and Missouri, have
undertaken similar research studies but DOT staff reported the results of the studies could not be
practically applied and therefore were not adopted (Sperry et al. 2017). Recent models developed
for Florida and Texas utilize more modern statistical analysis for predicting crash frequency at a
grade crossing. States such as North Carolina are moving toward an economic analysis model of
hazard ranking to incorporate the US DOT model in a more comprehensive economic analysis of

the grade crossing. Table 2.1 gives a summary of those models (Sperry et al. 2017).



Table 2.1 Usage of Different HRGC Safety Assessment Methods

Formula/Method Number of States | Percent of States
US DOT Accident Prediction Model 19 38%
State-Specific Formula or Method 11 22%

None/No Formula Mentioned 11 22%

New Hampshire Hazard Index 5 10%

Multiple Formulas 2 4%

NCHRP 50 Accident Prediction Model 1 2%
Peabody-Dimmick Formula 1 2%

Total All States 50 100%

2.1 Peabody-Dimmick Formula

The earliest rail crossing crash prediction model was the Peabody Dimmick formula,
which was published in 1941 and used extensively through the 1950s (Peabody and Dimmick

1941). It was based on five-year crash data reported at rural crossings in 29 states; the formula is:

(.DO.I'?IJ) (T0.151)
pD.l71

As = 1.28 % +K

(2.1)

where Ag is the expected number of crashes at a rail crossing in five years, v is the AADT, T
represents the average daily through trains, p is a protection coefficient (indicating presence of

warning devices) and K is an additional parameter determined from a graph. The formula utilized



AADT and the number of through trains to measure crash exposure but does not take into
account the temporal distribution of roadway and rail traffic.

2.2 New Hampshire Hazard Index

The New Hampshire Index is given by (Ogden 2007):

HI = (V)(T)(Py) (2.2)

where HI is hazard index, V' is the AADT, T represents the average daily through trains and Py
represents a protection factor (indicating the presence of warning devices). The basic formulation
of the New Hampshire Index is based on AADT and train traffic. Several states developed their
own hazard index formulae by using different values for Pr and adding other factors, such as
train speed, highway speed, population, sight distance, number of tracks, surface condition,
alignment, presence of nearby intersections, etc.

2.3 NCHRP 50 Accident Prediction Model

The National Cooperative Highway Research Program (NCHRP) Report 50 (Ogden

2007) reported the NCHRP Hazard Index for rail crossing assessment; it has the following form:

EA = (A)(B)(CTD) (2.3)

where EA is expected crash frequency, A is vehicles per day factor (provided in tabular format as

a function of vehicles per day), B is a protection factor indicative of warning devices present at a

crossing and CTD is the current trains per day at the crossing. According to Austin and Carson



(2002), no formal definition of urban and rural areas accompanied the Index and significantly
different crash predictions were possible by switching between urban and rural values.

2.4 US DOT Accident Prediction Model

The US DOT Accident Prediction Model was more comprehensive than previous models

with the following form:

a= (K)(ED(DT)(MS)(MT)(HP)(HL)(HT) (2.4)

where K is a constant, EI the exposure index factor, DT is the day through trains, MS the max
train speed, MT the number of main tracks; HP the highway paved factor, HL the highway lanes
factor and HT is the highway type factor.

The FRA has developed additional tools and resources to make the US DOT Accident
Prediction Model more accessible to users by way of its GradeDec.net evaluation tool (US
Department of Transportation 2018) and the Web Accident Prediction System (Federal Railroad
Administration 2020)

Besides some updates in the 1980s, the model structure of the US DOT Accident
Prediction Model has not changed substantially since its initial development in the mid-1970s.
The latest version was developed in 1986 by removing a variable for highway functional
classification (Hitz 1986).

2.5 Connecticut DOT Hazard Ranking Index

This hazard index was first mentioned in the Connecticut Railway-Highway Crossing

Program 2014 Annual Report (Connecticut Department of Transportation 2015).



_ (T+1)*(A+1)*AADT*PF

HI 100 (2,5)

where HI is Calculated Hazard Index, T is Train Movements per day, A is the number of
vehicle/train crashes in the last 5 years, AADT is annual average daily traffic and PF is
protection factor.

2.6 Florida DOT Safety Hazard Index

In 2014, FDOT updated its hazard ranking index which was developed by researchers at

Florida State University (Niu et al. 2014). This is a hybrid crash prediction model/Hazard index.

Logit model: t = —8.896 + 0.780 = Risk + 0.020 * MTS

+0.014 * HWSPD + 1.023 = Track

+ 0.965 * Lane — 0.540 * Flash (2.6)
Prediction model P =exp(t) /[1 + exp(t)] 2.7)
Adjustment for Acc. History P* =P PI:Y
(2.8)
Safety Index =90+ (1 — MZ;P) — 5% (logyo(B+1))*F
(2.9)

where Risk = log(Train) * AADT, Train is a yearly average of the number of trains per day,
AADT is annual average daily traffic, MST is maximum timetable speed, HWSPD is posted
vehicle speed limit, Track = log(main tracks + other tracks), Lane is the number of
highway lanes, Flash is dummy variable for the presence of flashing lights, Y is predicted the
number of crashes per year at crossing adjusted for history, H is the number of crashes at

crossings during history period, P is the number of years of crash history period, I is safety index

9



value, MaxP is the maximum value of incident prediction, B is the number of school buses at
crossing, and F is a variable for warning devices.

2.7 Missouri DOT Exposure Index

This index was developed in 2003 (Qureshi et al. 2003)

Passive Crossings: EI =TI+ SDO(TD) (2.10)

Active Crossings: El=TI (2.11)
g

__ (vM*VS)[(FM*FS)+(PM*PS)+(SM+10]
where TI is traffic index, 10000 , SDO is sight distance obstruction

__ Required sight distance—Actual sight distance

factor, B Requuired sight distance , VM is annual average daily traffic, VS is vehicle

speed, FM is daily freight train movements at a crossing, FS is freight train speed, PM is daily
passenger train movements at a crossing, PS is passenger trains speed and SM is daily switching
movements at a crossing.

2.8 North Carolina DOT Investigative Index

This index was described in the North Carolina Railway-Highway Crossing Program
2014 Annual Report (North Carolina Department of Transportation 2015). This index was

initially developed in the 1970s and updated in the 1980s.

__ PF+*ADT*TVATSF*TF
160

TI

n (70 . 3‘)2 + SDF 212

where PF is protection factor, ADT is average daily traffic, TV is daily train volume, TSF is train

Maximum train speed

speed factor=
50

+ 0.8, TF is track factor, A is number of crashes over history

10



period, Y is number of years in crash history, and SDF is the sight distance factor = sum(SDEn) ,

16.

2.9 Texas DOT Priority Index

This index was first developed in 2013 (Weissmann et al. 2013) and revised in 2015. It’s

a state-specific hybrid crash prediction model, given by:

L = exp [—6.9240 + PF + (0.2587 * HwyPaved) — (0.3722 =
UrbanRural) + (0.0706 = Traf Lane) + (0.0656 * TotalTrack) +
(0.0022 * ActualSD) + (0.0143 * MaxSpd) + (0.0126 * MinSpd) +
(1.0024 * log,(TotalTrn + 0.5)) + (0.4653 * log,, (AADT) ) —

(0.2160 * NearbyInt) + (0.0092 * SpdLmt)] (2.13)

where p is the predicted number of crashes per year, PF is protection factor, HwyPaved is
dummy variable, UrbanRural is dummy variable, TrafLane is the number of roadway lanes,
TotalTrack is the total number of tracks at a crossing, ActuallSD is actual stopping sight distance
for approach, MaxSpd is maximum typical train speeds, MinSpd is minimum typical train speeds
for switching, TotalTrn is total daily trains, AADT is annual average daily traffic, NearbylInt is
dummy variable representing nearby intersections, and SpdLmt is roadway speed limit on
approach..

2.10 FRA’s New Model for HRGC Accident Prediction and Severity

The FRA published an update to its accident prediction model (Brod and Gillen, 2020) to
support grade crossing management by enabling more accurate risk ranking of HRGCs, more

rational allocation of resources for public safety improvements and the ability to assess the

11



statistical significance of variances in the measured risk. The model is based on the zero-inflated
negative binomial (ZINB) regression along with the Empirical Bayes (EB) method that accounts
for crash history while correcting for “regression to the mean” bias. A multinomial logistic
(MNL) regression was utilized for the crash severity component having fatal, injury, and
property damage only as the crash outcomes. The new ZINB regression model has the following

equations (Brod and Gillen, 2020); the ZINB count model is given by:

NCountPredicted
— e[ﬁo +B11Expo+ f5:Dy+F3-D3+ B4 RurUrb+ B -XSurfID2s+f-1Aadt+ B, 1MaxTtSpd]

The ZINB zero-inflated model is given by:

Z
PmﬂatedZero = 1+z

z = elvotyrTotalTrains]

The ZINB combined model is given by:

Npredicted = Ncountpredicted (1 G PInftatedZero)

Where:

12



NCoumntPredicted

PmflatedZero
NPredicted
IExpo!
D2

D3

BurUrb
XSurfID2s

IMaxTtSpd!
1Aadt!

ITotal Trains!

Predicted accidents of count model (data for left-hand side of regression are
counts of accidents at crossings in 5-year period 2014-2018)

The probability that the grade crossing is an “excess zero”

Predicted accidents after accounting for excess zeroes

Exposure, equal to average annual daily traffic times daily trains

If warming device type 1s lights =1, 0 otherwise

If warning device type is gates =1, 0 otherwise

(note: if both Dy and D3 are zero, then warning device type is passive)
If Rural = 0, if Urban =1

Timber = 1, Asphalt = 2, Asphalt and Timber OR Concrete OR. Rubber = 3,
Concrete and Rubber =4

Maximum timetable speed (integer value between 0 and 99)
Average annual daily traffic

Total number of daily trains

'These variables have been transformed as follows: Ix = log(1+ax). where x is the original
variable and a 1s a factor. The factor a was selected so that for the median value of x, In(1+ax) =

In(x)

The estimated coefficients are as follows (Table 4.1 in Brod and Gillen, 2020):

ZINB regression count model coefficients (negative binomial with log link)

Variable Estimate Std. Error Z value Pr(=|z|) Significance
(p-value) Code
(Intercept) -8.35922 0.32079 -26.059 < 2e-16 ok
IExpo 0.19023 0.02866 6.638 3.18e-11 ok
D2 -0.28478 0.04806 -5.926 3.10e-09 ok
D3 -0.85770 0.04089 -20.976 < 2e-16 ok
RurUrb 0.39346 0.03162 12.444 < 2e-16 ok
XSurfacelD2s 0.13182 0.01715 7.686 1.52¢-14 ok
IMaxTtSpd 0.68760 0.68760 22.702 < 2e-16 ok
1Aadt 0.10626 0.10626 3.511 0.000446 Hokd
Log(theta) -0.25934 .08867 -2.925 .003447 ok

ZINB regression zero-inflation coefficients (binomial with logit link)

Variable Estimate Std. Error z-value Pr(>|z|) Significance
(p-value) Code

(Intercept) 1.17084 0.19001 6.162 7.19e-10 HkE

ITotalTr -1.01088 0.08452 -11.961 < 2e-16 ok

Significance codes: 0'**# 0.001 *#* 0.01 " 0.05''0.1"''1

13



The MNL crash severity model utilized grade crossing characteristics and modeled the
probabilities of fatal, injury, and property damage-only crashes. Fatal crashes were selected as
the reference category and the MNL estimated the probabilities of the other two categories
relative to the reference category. The crash severity model equations were as follows.

Injury crash (relative to fatal crash):

P(acctype = injury | A
P(acctype = fatal | A

P20 + P21 IMaxTtSpd + B,; - 1Trains + f,3 - RuralUrban + 54D,

Property damage crash (relative to fatal crash):

P(acctype = PDO | A B
P(acctype = fatal |A)

Bao + P31 ' IMaxTtspd + f3, *ITrains + f33 * RuralUrban + f34:D,

Where:

P(acetype = fatal | A) The probability of a fatal accident given an accident A
P(acetype =injury | A}  The probability of an injury aceident given an accident A

P(acctype =PDO | A}  The probability of a PDO accident given an accident A

IMaxTtSpd Natural log of the maximum (rail) timetable speed at the crossing
ITrains Natural log of the total number of daily trains at the crossing
RuralUrban 1 if crossing is in a rural (non-urban) environment. 0 if in urban
D2 Has value 1 if warning device type is lights. 0 otherwise

The estimated coefficients were as follows (Table 4.1 in Brod and Gillen, 2020).
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Regression Output — Accident Severity ‘
Part A — For a given accident, probability of an injury accident (relative to a fatal accident)

Variable Estimate Std. Error z-value Pr(jz))=0
Intercept 5.248627 0.355109 14.78032 0
IMaxTtSpd -0.92544 0.097943 -9.44876 0
|Trains -0.28326 0.042458 -6.6716 2.53e-11
RuralUrban -0.27408 0.072886 -3.76042 0.00017
D2 0.489354 0.141041 3.469598 0.000521
Part B — For a given accident, probability of a PDO accident (relative to a fatal accident)
Variable Estimate Std. Error z-value Pr(|z))=0
Intercept 6.957135 0.339015 20.52161 0
IMaxTtSpd -1.23128 0.092907 -13.2528 0
1Trains -0.22114 0.039411 -5.61125 2.01e-08
RuralUrban -0.24085 0.067191 -3.58462 0.000338
D2 0.330487 0.135769 2.434192 0.014925

Forecasts for injury severity can then be obtained by using the standard equations for

multinomial models.
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Chapter 3 Modeling Background
This chapter presents background information on two types of models that are prevalent
for count data such as yearly crashes at HRGCs: Poisson and the Zero Inflated Poisson/Negative
Binomial model.

3.1 Poisson Regression Model

The nature of crash frequency is non-negative integers or count data and the widely
adopted approach has been the Poisson regression model (Miaou and Lum, 1993). Poisson model
is a parametric model in which the crash occurrence Y follows a Poisson distribution, which can

be described mathematically:

Y ~Poisson(u(.)) (3.1)
Where u is the model parameter. So, the probability of variable Y taking integer values 1, 2, 3,...

can be represented as:

P{Y =y} = e';‘f‘y (3.2)
E(Y)=var(Y)=u (3.3)

Where the mean E (Y) and variance var(Y) are equal. Thus, the probability of zero is:
P{Y=0}=e¢H (3.4)

As the Poisson model became the basis of many studies, its variants also gained
popularity due to the limitations of simple Poisson models. For example, the Negative

Binomial/Poisson-Gamma model can handle over-dispersion which occurs when mean of
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response variable is much higher than the variance while it violates the basic Poisson model
assumptions (Milton and Mannering, 1998). In a negative binomial distribution with parameters

u and a, the mathematical form is as follows:

Py =y =T (Y ey @5)
P{Y =0} = (1 + au)~ V= (3.6)
EXY)=u (3.7)

var(Y) = u(1 + ap) (3.8)

Where a quadratic function of the mean for @ > 0, equivalent to the Poisson variance if @ = 0.

Furthermore, Lord and Mannering (Lord and Mannering, 2010) pointed out a variety of
potential data and methodological issues in crash frequency analyses that have been identified in
existing literature, including over-dispersion, under-dispersion, unobserved temporal and spatial
correlation, low sample-mean and small sample size, crash-type correlation, fixed parameters,
etc. These issues could lead to erroneously specifying analytical models and hence misleading
inferences if not addressed properly.

3.2 Zero-inflated Model

Another set of models is zero-inflated Poisson and negative binomial models, designed to
deal with a significant proportions of a response variable taking zero values or more zeros than
one would expect in conventional count data scenario. The formulas for zero-inflated Poisson

model is as follows, including a parameter r:
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PlY=0}=m+ (1 —m)e * (3.9)
EY)=>0Q-mu (3.10)

var(Y) = (1 —m)u(1 + un) (3.11)

On the other hand, a zero-inflated negative binomial model is formulated as follows:

Ply=0}=n+ 1 -nm)(1+ au)~ (3.12)
E(Y) = (1-mu (3.13)
var(Y) =1 —-m)pu(1l + u(r + a)) (3.14)

Where if @ = 0 the model is equal to a zero-inflated Poisson model.

This model was used to model crash frequency. As the crash frequency is count data
(non-negative integer), and crash occurrence at HRGC is a relatively rare event, the data is
considered exhibiting over-dispersion and excess zero. The zero-inflated Poisson (ZIP) Model
assumes that data distribution is a combination of Poisson distribution and logit distribution,
which fits the circumstance of this research. Figure 3.1.1 simulates 500 samples that follow a

zero-inflated Poisson distribution.
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Figure 3.1 Simulated Zero-inflated Poisson Distribution

As can be seen from this figure, the distribution is a skewed Poisson distribution with

large amount of data equal to zero. Therefore, to describe the distribution, the ZIP model

contains two parts: a Poisson model, which is responsible for predicting non-negative value, and

a logit model for predicting excess zeros. The ZIP model can be expressed as:

Pri=0)=p;+ (1 —p;) xe

Yi
P(y; =m, form>0) = (1 —p) x L e

_ A
bi = 1424

log(w;) = Xp
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, _ pi
logit(p;) = log (1—_m) (3.19)

where pi is the logistic link function defined by equation (3.17), y; is the Poisson component
defined by equation (3.4). As can be seen, the ZIP model splits the possibility of response values
into two scenarios: equation (3.1) describes the scenario when the count is equal to zero, while
equation (3.2) generates count values by a Poisson model when the count is not zero.

The coefficients can be estimated by solving its maximum likelihood function. The

likelihood function can be expressed as:

L= Yforiify—olog(; +e™)
+ mer iif y;>0 ilog(u;) — u; — log(m!)]

—2ilog(1 +4;) (3.20)

Because it is often observed in crash data that many locations have no occurrence of
crash, by splitting roadway segments into crash-free and crash-prone categories, zero-inflated
models have been frequently considered in research (Shankar et al., 1997; Lee and Mannering,
2002; Lord et al., 2007). Critics have argued that the crash-free state has a long-term mean equal
to zero, this model cannot properly reflect the crash-data generating process (Malyshkina and
Mannering, 2010). Similarly, various other count data models were considered over the years
including the Gamma model, the negative binomial-Lindley model, Conway-Maxwell-Poisson

model, and so on.
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Chapter 4 Data Collection

This chapter provides detailed information on the data utilized throughout this research
study. Safety data regarding rail crossings from multiple sources were collected and integrated
for analysis, including HRGC inventory database and crash history data extracted from
publically-available FRA data, Railroad Inventory Management System (RIMS) obtained from
NDOT, Lancaster roadway inventory database and land use data obtained from City of Lincoln,
Nebraska. A significant number of database variables were manually inspected and verified
during field visits such as roadway speed limit, pavement type, land use, etc.

4.1 FRA HRGC Inventory Database

According to the Federal-Aid Policy Guide (FAPG 924.9(a) (1)), each state should
maintain “a process for collecting and maintaining a record of crash, traffic, and
highway data, including, for railroad-highway grade crossings, the characteristics of both
highway and train traffic” (U.S. Department of Transportation, 1991). National Highway-Rail
Crossing Inventory Reporting Requirements also states that, “in order for the Crossing Inventory
to serve as an effective database, States and railroads need to exchange information with each
other and promptly update the crossing data records as changes occur”. Thus, FRA collects from
each state and maintains a database on HRGCs for the entire US.

Updates to HRGC inventory data are usually provided by the local coordinators and
submitted using FRA-approved forms. These forms have specifications for different field names
and value assignments. Authorized users must submit new values for specific field names
accordingly. The field names, filed description and values used in this study are attached in
Appendix A, which conformed to the FRA HRGC inventory database. Because reporting updates

for the inventory database does not necessarily require verification from other agencies, data for

21



some fields may not be updated regularly, such as AADT and train traffic volumes. This could
lead to outdated or erroneous data, which could affect crash predictions by models based on the
database. Accuracy issues in the FRA crossing inventory database raise concerns for states and
railroad companies. In addition, FRA provides geospatial resources to the public on rail
networks, including data on HRGCs, Amtrak stations, etc. Spatial information of a given
crossing is denoted by latitude and longitude in the database.

Various fields are useful when integrating crossing inventory data with crash data, such
as crossing ID, state, county, nearest city name, etc. The inventory database also provides details
for the train traffic traversing a crossing: total daylight thru trains, total night time thru trains,
total transit trains, number of main tracks, number of siding tracks, number of yard tracks,
number of transit tracks, average passenger train count per day, etc. Variables with regards to
safety measures include presence of signs/signals, number of crossbuck assemblies, number of
stop signs, number of yield signs, number of bells, flashing lights, channelization
devices/medians, gate configuration, etc. The FRA inventory database also provides information
on the crossing highway, such as number of traffic lanes crossing rail track, pavement type,
highway functional classification, street or road name, posted highway speed limit, etc.

4.2 FRA HRGC Crash Database

Title 49 Code of Federal Regulations (CFR) Part 225 (US GPO, 2006) requires reporting
of railroad-related crashes to the FRA. Specifically, FRA has made efforts to build several
databases to gather information on evaluating railroad safety, including: train crash database,
trespasser crash database, rail equipment crash database, highway rail crossing crash database,
railroad casualty database, etc. FRA uses the reported crash data to summarize a yearly report on

crashes that involve the impact of a train with a roadway user. If a crash is involved with railroad

22



signal failure or grade crossing failure, railroad companies are required to provide more details
along with the crash report form. Furthermore, FRA requires various forms with regards to
different scenarios, such as Form FRA F 6180.55 for injury and illness and Form FRA F 6180.57
for Highway-Rail Accident/Incident, etc.

The fields available in the crash database consist of a series of categories, such as crash
information, crossing information, train information, environmental factors, highway
characteristics, etc. For instance, the crash information includes time of crash, AM or PM, injury
severity outcome, number of injuries or fatalities of roadway users, number of injuries or
fatalities of railroad employees, number of injuries or fatalities of train passengers, etc.
Environmental factors at the time of crash consist of temperature, weather conditions, lighting
conditions, etc. Train information includes number of cars, number of locomotives, type of train,
train speed, etc. Additionally, other important factors such as release of hazardous materials are
also included. Textual descriptions of crashes can also be provided in the reporting form.
Appendix B provides the FRA HRGC crash database fields.

4.3 Field Validation of the FRA HRGC Database

As part of Lancaster County HRGC consistency analysis, the research team validated the
information contained in the FRA HRGC inventory database with HRGCs in the field. HRGCs
were taken into consideration if they were public, at-grade, and operational. The research team
visited public rail crossings in Lancaster County and compared field conditions with those of the
database; corrections were made to any erroneous records in the database as well as missing
values added when available in the field. This inventory validation effort was then extended to
Cass, Douglas, Gage, Jefferson, Otoe, Saline, Sarpy and Saunders counties. The selection of

these additional eight counties was based on railroad network considerations, urban/rural nature
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of a county, proximity to the University of Nebraska-Lincoln, and availability of funds in the
project.

Figure 4.1 illustrates the HRGC filtration process and the FRA HRGC inventory database
variables used for Lancaster County. A similar process and the same variables were used for
HRGC filtration in other counties. Figure 4.2 graphically illustrates the results of HRGC
filtration process for Lancaster County. For this county, there were 565 rail crossings in the FRA
HRGC database; however, exclusion of private, elevated (grade-separated), and closed HRGCs
resulted in the selection of 112 HRGCs. Field visits to the selected HRGCs revealed that seven
HRGCs were either missing or relocated thereby resulting in 105 Lancaster County HRGCs that

were field-verified.

Lancaster County Crossing Selection

Research object: Public| |HRGCs|that are|not closed|in[Lancaster coun
) ty|

Filter in FRA database: | Xing Type || Xing Position || ReasonID | | State, County |

| Select: Public | | Select: At grade | State = NE
County = Lancaster

Remove: Closed;
No train traffic

Figure 4.1 HRGC Filtration Process for Lancaster County
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Total HRGCs in
Lancaster County:

Total public
HRGC=:418

Errors: 7

crossings: 495

Figure 4.2 Results of HRGC Filtration Process for Lancaster County

For each field-visited HRGC, a total of 53 database variables were checked and digital
pictures of the HRGC obtained. Any incorrect values in the database were corrected per field
conditions as well as missing values added when they were available in the field. Table 4.1
presents a summary of the corrections and missing value additions for the nine Nebraska
counties from field visits. In aggregate, 539 HRGCs were field-investigated and 27 (5.0%) were
found to be either abandoned (non-operational), private (listed as public in the database) or
altogether non-existent. This effort resulted in 2,241 values to be corrected and 1,732 missing
values to be added giving an average of 7.4% of the database values that were changed at each

HRGC.
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Table 4.1 Summary of Corrections and Added Missing Values from Field Validation

County Numberof | Numberof |HRGCs Visited|Abandoned/Non-| Percent Corrected
Corrected |Missing Values existent/Private | and Added Missing
Values Added HRGCs Values
Lancaster 376 657 112 7 9.2
Cass 307 83 55 2 7.1
Douglas 286 108 67 3 5.9
Gage 115 347 41 4 11.3
Jefferson 174 25 46 2 4.3
Otoe 285 46 79 4 4.2
Saline 119 37 38 0 4.1
Sarpy 144 59 25 2 8.1
Saunders 435 370 76 3 10.6
Total 2241 1732 539 27 7.4

During the spring 2020 COVID-19 shutdown, the research team relied on the NDOT’s

PathWeb system to validate the FRA HRGC database. This photo-based system is focused on

state highways and therefore, HRGCs located only on the state highways could be checked.

Table 4.2 presents a summary of the corrections and missing value additions using the PathWeb

system. This effort identified 6 (2.9%) HRGCs that were either abandoned, private, or altogether

non-existent. The number of corrected values was 670 while 109 missing values were added to

the database for an average of 3.8% of the database values changed at each HRGC.

Table 4.2 Summary of Corrections and Added Missing Values Using NDOT’s PathWeb System

State Highway | Numberof | Number of HRGCs Abandoned/Non- | Percent Corrected
system Corrected |Missing Values| Inspected |existent/Private and Added Missing
Values Added Values
PathWeb 2019 670 109 203 6 3.8
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Database variables that frequently contained incorrect information included: the number
of crossbucks, number of yield signs or stop signs, number of advance warning signs, presence
of channelization devices, crossing surface type, approach surface type and highway speed limit.
Figure 4.3 presents an example of the inconsistency between the FRA HRGC inventory database
and field conditions at crossing 064112B in terms of presence of yield sign, pavement type,
approach surface type and pavement marking. Figure 4.4 shows an example of a crossing

(crossing 1D 083524P) that was abandoned but is still in the FRA HRGC inventory database.

Longitude YIELD Signs (R1.
40.3210026  -96.8373631
40.3210026 -96.8373631

Crossing Numl Latitude Longitude
Crossing Num[l.atitude Lpngirtyidrei Is Roadway/Pz| 0641128 40.321062; -96.83736"
0641128 40.3210026  -96.8373! 0641128 40.3210026  -96.8373631 ¢
0641128 40.3210026 -96.8373631) NARA1T12L AN 2124Q4A  _QA 2242001

Crossing Numi Latitude Longitude Pavement Mai
0641128 40.3210026  -96.8373631 | {No Marki
40.3210026  -96.8373631|

Figure 4.3 Data Correction Example, Crossing 064112B
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Current Crossing: 072952F

Figure 4.4 An Example of an Abandoned Crossing (083524P)

The numbers of corrected or added missing values for various variables were recorded
for each county. For instance, figure 4.5 shows the numbers of corrected or added values for
different inventory variables in Gage County. The variables with high incorrect values were
HwynrSig (does nearby highway intersection have traffic signals), Bkl_FlashPost (mast-mounted

flashing lights: back lights), and Sdl_FlashPost (mast-mounted flashing lights: side lights).
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Figure 4.5 Corrected or Added Values of Each Variable for Gage County

In summary, the combined effort of field visits and use of the PathWeb system resulted in
inventory verification of 742 HRGCs in Nebraska; in total 2,911 values were corrected and 1,841
missing values were added to the HRGC inventory database while 33 HRGCs were identified
that were either abandoned, private listed as public or altogether non-existent. An Excel file
containing the original and corrected/added values and a GIS database (including the HRGC
digital pictures) using ESRI’s ArcMap software were created for handover to NDOT (fig. 4.6).
In addition, the Lancaster Roadway Inventory Database and land use data from City of Lincoln
supplemented the GIS as shown in figure 4.7. This was then used for the HRGC consistency
analysis.

According to the FRA HRGC inventory database, there are 2,863 public, at-grade,
operational crossings in Nebraska. With 742 HRGCs validated via a combination of field visits
and NDOT’s PathWeb system, 2,121 HRGCs are remain in need of inventory information

validation.
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4.4 Database for Updated Crash Prediction Model

The corrected crossing inventory database records were appended to the HRGC crash
database by using the unique crossing IDs available in the two databases to create a combined
database for crash prediction modeling. The FRA HRGC crash database contained crash history
data from 2008 to 2019 on Nebraska HRGCs. For model estimation, the yearly number of
reported crashes for each HRGC was considered an observation. Using this framework, 393
observations were associated with crashes. Of these, 224 (57.0%) observations were crashes with
no injuries, 124 (31.6%) observations with injuries and 45 (11.4%) observations involved fatal
crashes. Model parameter estimation was based on 2008-2018 crash plus inventory data while
the 2019 crash plus inventory data were used for the model prediction validation. Chapter 5
provides details of the modeling efforts.

4.5 Descriptive Statistics

After integrating data from various sources, descriptive statistics of the variables used
through the model estimation and evaluation process are presented. Note that for each crossing
there is one observation for each year. Figure 4.8 shows a histogram plot demonstrating the
distribution of the studied highway rail grade crossings by natural logarithmic values of AADT.
It can be observed that the maximum and minimum values for AADT are around 50,000 vehicles
per day and one vehicle per day, respectively. The average AADT for all considered crossings is

approximately 672 vehicles per day.
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Figure 4.8 Histogram of Highway Rail Grade Crossings by AADT (natural logarithm)

Figure 4.9 shows a histogram plot demonstrating the distribution of the studied highway
rail grade crossings by the number of through trains (including day and night). It can be observed
that the maximum and minimum values for the number of through trains are 118 and zero trains
per day, respectively. The average value for all considered crossings is approximately 16.47

trains per day.
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Figure 4.9 Histogram of Highway Rail Grade Crossings by Number of Through Trains

Figure 4.10 shows the distribution of the studied highway rail grade crossings by

highway classification (urban or rural). It can be observed that 92.2% of the roadways (a total of

2,192 crossings, excluding missing values) at HRGCs were classified as rural.
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Figure 4.10 Distribution of Highway Rail Grade Crossings by Highway Classification

According to FRA’s classification of highway functional classification, roadways can be
categorized as six levels: (1) interstate; (2) other freeway and expressway; (3) other principal
arterial; (4) minor arterial; (5) collector; and (6) local roadway. Figure 4.11 shows the
distribution of the HRGCs by highway functional classification. It can be observed that 1,693
roadways were classified as local roads (77.5% of all the roadways). In addition, there were 136
minor collector roadways, 269 major collector roadways, 73 minor arterial roadways, 13 other

principal arterial roadways and 1 other freeways and expressway.
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Figure 4.11 Distribution of Highway Rail Grade Crossings by Highway Function Classification
Figure 4.12 presents the distribution of the HRGCs by highway lanes. As shown in the
figure, the minimum number of traffic lanes at the HRGCs was one lane, while the maximum

value is eight lanes. The distribution indicates the majority of the roadways at HRGCs (85.2%)

consisted of two traffic lanes.
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Figure 4.12 Distribution of Highway Rail Grade Crossings by Number of Traffic Lanes

In terms of the dependent variable, crash frequency at HRGCs, based on the crash history
data on a yearly basis, only five HRGCs were associated with two crashes while 388 HRGCs had
only one crash and the rest of the dataset had zero crashes. It can be observed that the majority of
observations (99.0%) did not involve a crash. The disproportionate distribution of zero values

warrants the investigation of a zero-inflated model as discussed in Chapter 3.
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Chapter 5 HRGC Crash Prediction Model Estimation

This chapter covers the first research objective, which was to update NDOT’s 1999
Nebraska Accident Prediction Model for rail crossings using the latest crash and rail crossing
inventory data. It presents the estimation of the 2020 Nebraska HRGC Crash Prediction Model
based on the dataset created for model estimation including the model estimation process and the
different variants that were explored.

The 1999 Nebraska Accident Prediction Model for rail crossings (HNTB, 1999) was
based on 5-year data. This research utilized 11-year (2008-2018) crash and HRGC inventory data
for the 2020 Nebraska HRGC Crash Prediction Model estimation and 2019 crash and HRGC
inventory data for validation of the model predictions. The 11-year dataset is also referred to as
training data in this report. The model estimation process aimed to investigate statistical
associations of various factors (e.g., crossing characteristics, exposure measures, land use, etc.)
with crashes at HRGC:s. In this chapter, various statistical modeling techniques (e.g., Poisson or
Negative Binomial) are explored and evaluated based on characteristics of the data and statistical
tests. The corresponding results present a set of models (equations) for the expected number of
crashes per year at Nebraska public HRGCs. Note that the data utilized for model estimation
included HRGC corrected inventory data resulting from field visits and use of the NDOT
PathWeb system as described previously in this report.

The estimated model equations were validated by predicting crashes for 2019 and
comparing those results with the actual crashes reported in 2019. Additionally, results of the
model equations were compared to those obtained from the 1999 Nebraska Accident Prediction
Model as well as the new FRA Accident Prediction Model (Brod and Gillen, 2020) when applied

to Nebraska data. Consequently, the 2020 Nebraska HRGC Crash Prediction Model
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outperformed the 1999 Nebraska Accident Prediction Model and the new FRA Accident
Prediction Model.

5.1 Analysis of Accident Prediction Models Based on Various Criteria

This section presents the estimation results of candidate crash prediction models with
descriptions of the model selection procedure. The HRGC crash data for 2019 were used to
assess goodness of fit of the candidate crash models based on various performance metrics.
Specifically, the model selection criteria included mean of squared error (MSE) and root mean of
squared error (RMSE), logarithm score, Akaike information criteria (AIC) and the percent
difference in 2019 crash predictions.

There were a few models that could be appropriate for modeling the HRGC crash data:
Conventional Poisson regression and Negative Binomial regression (to address over-dispersion),
Zero-inflated Poisson/Negative Binomial models (to account for excess zero crashes) and
Poisson/Negative Binomial models with mixed effects, assuming normality and homogeneity of
variance of residuals. For each model framework, variable selection was performed based on the
results of AIC, logarithm score and forward selection. In addition, a “small” model was also
considered as an important benchmark, which was based on the variables used in the existing
NDOT Accident Prediction Model (HNTB, 1999). To determine the best performing model,
several procedures were conducted such as over-dispersion test, model selection, variable
selection, etc. and the results are as follows.

5.1.1 Over-dispersion test

A standard Poisson regression models the conditional mean E(Y) = u, which is assumed

equal to the variance of the dependent/response variable. The over-dispersion test assesses the

hypothesis that this assumption holds against the alternative that the variance is of the form:

38



var(Y) = u(1 + aw)

Where a quadratic function of the mean for & > 0, equivalent to the Poisson variance if @ = 0.
Over-dispersion corresponds to @ > 0 and underdispersion to @ < 0. The coefficient « can be
tested with the corresponding z statistic which is asymptotically standard normal under the null
hypothesis. By building a Poisson model on the model estimation dataset, the over-dispersion
test yields a p-value of 0.24 which indicated a lack of significant evidence of over-dispersion or
under-dispersion. It can also be validated by examining the mean and variance of the response
variable. The yearly mean crash frequency of the training dataset was 0.0098 (crashes) while the
variance was 0.0010 (crashes?). Thus, estimating a Poisson model was viable for this dataset and
there is was no need for estimating a Negative Binomial models.
5.1.2 Candidate model performance

The US DOT formula has an initial model and two variants (referred to as weighted and

normalized). The initial model can be estimated using the following equation:

a=K-EI-MT-DT-HP-MS-HT-HL
Where:
a is the initial crash prediction outcome;
K is the constant;
E1 is the factor for exposure index based on the product of highway and train traffic;
MT indicates the factor for the number of main tracks;
DT indicates the factor for the number of through trains per day during daylight;

HP indicates the factor for highway pavement status;
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MS indicates the factor for maximum timetable speed;
HT indicates the factor for highway type;

MS indicates the factor for the number of highway lanes;

This initial model has two variants, based on the values of the highway-rail grade
crossing characteristic factors such as traffic control devices installed at a given highway-rail
grade crossing: (a) passive; (b) flashing lights; and (c) gates.

For instance, the “weighted” model or the second crash prediction is formulated as

follows:

T

Ty
B = +T(a)+

T, N
_0 =)

To To+T'T

Where:
a is the initial crash prediction outcome;
B is the second crash prediction outcome;

N is the number of crashes occurred in T years;

- H M ! .
Tois a weighting factor that equals ~——

The “normalized” model can be formulated by normalizing the constant, which is the
sum of the predicted crashes multiplied by the corresponding normalizing constant equal to the
number of crashes, which occurred in a recent period. The normalizing procedure is different
depending on the installed control devices at each highway-rail grade crossings separately.
Similarly, the 1999 NDOT Accident Prediction model (HNTB, 1999) has “weighted” and

“normalized” formulas as well.
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Table 5.1 presents the performances of different candidate crash prediction models.
Evaluation metrics such as AIC, MSE, logarithm score and prediction outcome are reported for

comparison.
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Table 5.1 Performance of Candidate Nebraska Crash Prediction Models

Percentage
difference in
Logarithm | Predicted
Candidate models AIC MSE RMSE prediction
score outcome
results for
2019
All variables 2408.142 | 0.008132886 | 0.090182515 | 0.05391566 21.078 -15.69%
Small 2452.267 | 0.008001879 | 0.089453222 | 0.05533638 21.262 -14.95%
Selected variables based on AIC 2422.401 | 0.008027479 0.0895962 0.05217232 21.078 -15.68%
Selected variables based on LR
2418.829 | 0.008021923 | 0.089565189 | 0.05388908 21.079 -15.68%
Poisson | test
Selected variables based on
2434.824 | 0.008712828 | 0.09334253 | 0.04775778 26.156 +4.62%
stepwise selection
Mixed effects all variables 2407.311 | 0.008138168 | 0.090211795 | 0.05409535 21.077 -15.69%
Mixed effects small 2442 536 | 0.007960817 | 0.089223411 | 0.05557907 21.262 -14.95%
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Mixed effects all variables based

2421.009 | 0.008036451 | 0.089646255 | 0.05273017 21.079 -15.68%
on AIC
Mixed effects all variables based
2411.967 | 0.008080538 | 0.089891813 | 0.05287434 | 21.078 -15.69%
on LR test
All variables 2382.547 | 0.008289844 | 0.09104858 | 0.04591305 21.086 -15.65%
Small 2437.525 | 0.00802454 | 0.089579797 | 0.09737134 | 21.266 -14.93%
Selected variables based on AIC 2393.524 | 0.008146457 | 0.090257725 | 0.1037519 21.080 -15.68%
Zero-
Selected variables based on
inflated 3246.723 | 0.008712828 | 0.09334253 0.0759834 28.082 +12.33%
stepwise selection
Poisson
Mixed effects small 2408.802 | 0.008115772 | 0.09008758 | 0.06357789 14.731 -41.07%
Mixed effects all variables based
2399.02 | 0.008027471 | 0.089596155 | 0.07578753 14.439 -42.24%

on LR test
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Table 5.1 (cont.) Performance of Candidate Nebraska Crash Prediction Models

Percentage
difference
Logarithm | Predicted
Candidate models AlC MSE RMSE in
score outcome
prediction
results
1999 Raw - 0.008087182 | 0.089928761 - 0.1469295 | -99.41%
NDOT | Weighted - 0.008007666 | 0.089485563 - 6.05532 -75.78%
model Normalized - 0.008019007 | 0.089548908 - 3.749482 -85.00%
Raw - 0.008056705 | 0.08975915 - 4.871511 -80.51%
us
Weighted - 0.007994272 | 0.089410693 - 10.04063 -59.84%
DOT
Normalized - 0.008007084 | 0.089482311 - 6.206282 -75.17%
model
New ZINB model variables 2398.908 | 0.008194754 | 0.090524881 | 0.05509472 | 21.09046 -15.64%
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As there were 25 crashes reported in 2019, the most accurate model prediction outcome
was 26.16 from the Poisson model with stepwise selection of independent variables, even though
it did not have the smallest AIC value (a smaller AIC value usually indicates a better goodness of
fit). The results indicated that most Poisson models achieved similar outcomes with
approximately 21 crashes predicted for 2019, including the New FRA ZINB model (Brod and
Gillen, 2020). All regression models were able to outperform variants of the existing US DOT
crash prediction models. However, based on the prediction outcome, mixed effects models and
zero-inflated models did not demonstrate significant improvement compared to the variants of
the conventional Poisson models.

In terms of the variable selection procedure, AIC, likelihood-ratio test and stepwise
selection were all utilized. For instance, since missing values were common in the dataset and
could lead to potential convergence issues, the modeling started with inclusion of all available
variables and then narrowed them down to a smaller set of variables in the stepwise regression
process. The stepwise regression started from containing the constant only as the base and
moved forward towards a set of variables containing train volume, maximum timetable speed,
the number of main tracks, AADT, presence of gates, presence of flashing light, exposure
(AADT multiplied by daily trains), etc. The Poisson model selected by the stepwise algorithm
was the best performing model in terms of prediction closest to the 2019 reported HRGC
crashes. Therefore, it was chosen as the 2020 Nebraska HRGC Crash Prediction Model and it
updates the 1999 Nebraska Accident Prediction Model.

In addition, efforts were made to estimate candidate models based on different data, such
as using 2008-2016 data as training data and 2017 data for validation, and using 2008-2017 data

as training data and using 2018 data for validation. Appendix C presents the results of these
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scenarios. However, the crash prediction model for Nebraska was based on 2008-2018 data with
2019 data used for validation.
5.1.3 The 2020 Nebraska HRGC Crash Prediction Model estimated coefficients

Tables 5.2 and 5.3 present the output for the stepwise-based Poisson regression model for

the 2020 Nebraska HRGC Crash Prediction Model. Note that all variables with numerical values

were scaled before model estimation using the formula /Y(x2)/(n — 1). Indicator variables

were created for categorical variables.

Table 5.2 Deviance Residuals

Min 1Q Median 3Q Max

-1.0358 -0.1731 -0.1020 -0.0761 3.9529

Table 5.3 Estimated Coefficients of the 2020 Nebraska Crash Prediction Model

Parameter Estimate Std. Error Z-statistic P-value
Intercept/Constant -7.1427 0.26092 -27.375 < 2e-16
MaxTtSpd.scaled 1.57265 0.18292 8.597 < 2e-16
Expo.scaled 0.11558 0.02555 4.524 6.08e-06
MainTrk.scaled 0.58506 0.14191 4.123 3.74e-05
Aadt.scaled 0.16671 0.06706 2.486 0.0129

The column labeled “estimates” indicates the Bs from the count model. The “Std. Error”

corresponds to the standard error calculated for the variable to the left. The “Z-statistic” column
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is the coefficient divided by the standard error. The statistical significance of the variable was
indicated by p-value in the last column, which all showed strong statistical significance.

5.2 Interpreting Regression Output

According to the model estimation results, all of the estimated coefficients for MaxTtSpd,
MainTrk, Expo and Aadt were positive indicating positive relationships between the explanatory
variables and the response variable (i.e., as the variables increase in values so does the expected
HRGC yearly crash frequency).

Using the estimated coefficients, the crash prediction model can be formulated as:

log(y) = —7.1427 + 1.573 * MaxTtSpd. scaled + 0.1156 * Expo. scaled
+0.5851 * MainTrk. scaled + 0.1667 * Aadt. scaled
Where:
y indicates the expected HRGC yearly crash frequency;
MaxTtSpd is the scaled maximum timetable speed,;
Expo is the scaled exposure;
MainTrk is the scaled number of main tracks; and

Aadt is the scaled average annual daily traffic.

These variables were found statistically significant at the 95% confidence level.
Interpretation of the model output is as follows:
1) With 95% confidence, a one-unit increase in the scaled maximum timetable speed

leads to a 381.9% increase in the expected HRGC yearly mean crash frequency;

47



2) The yearly mean crash frequency is estimated to increase by 12.3% for every one-unit
increase in the scaled exposure;
3) With 95% confidence, a one-unit increase in the scaled number of main tracks leads
to a 79.5% increase in the yearly mean crash frequency;
4) The yearly mean crash frequency increases by 18.1% for every one-unit increase in
the scaled AADT;
The estimated model can predict the number of expected crashes for a HRGC. For
instance, figure 5.1 shows predicted values based on the stepwise-based Poisson model, grouped
by presence of crossbucks. In the figure, the vertical lines indicate the average exposure for each

grouping and the horizontal lines indicate the predicted crash frequency for each grouping.
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Predicted Accidents by Crossbucks

N.predicted

.
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Figure 5.1 Predicted Crashes by Presence of Crossbucks

5.3 Empirical Bayes Prediction Adjustment

To address “regression to the mean” bias, the Empirical Bayes (EB) adjustment accounts
for crash history. This technique is described in Hauer (2015) and applied in the FRA’s New
Accident Prediction Model (Brod and Gillen, 2020). The adjustment can be formulated as

follows for each HRGC:

Nexpected =w- Npredicted +(1-w)- Nopservea

var (Npredicted)

Npredicted

w=1/1+
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Where:
Nexpectea indicates the adjusted number of predicted crashes;
Npreaictea indicates the prediction result from the estimated Poisson model;

N,pserveq INdicates the number of observed accidents.

Note that, if needed, this procedure is required to account for additional coefficients for
zero-inflated models and Negative Binomial models. After applying the EB adjustment, the
results of predicted crashes by presence of crossbucks are presented in figure 5.2. Compared to

figure 5.1, the values reflected on y-axis are centered on either 1 or 0.
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Predicted Accidents by Crossbucks with EB Adjustment

0 5 10 15 20
1 1 1 1 1 1 | 1 1
No Yes
17[] — - -
0.8
06
T
o
L
0.4
0.2
00 — —————— ewmanr *r e — e
T T T T T T T T
0 5 10 15 20

expo

Figure 5.2 Predicted Crashes by Presence of Crossbucks with EB Adjustment

51




Chapter 6 Crossing Consistency Assessment
This chapter covers the second research objective, which was to develop guidelines for
improving safety at urban HRGCs that are not designated quiet zones but are in vicinity of
existing quiet zone crossings. The focus was on HRGCs located in Lancaster County, Nebraska.
HRGCs in Lancaster County were visited and inventory data corrected with field conditions as
described in Chapter 4.

6.1 Methodology for Consistency Assessment

The methodology consisted of a selection of HRGCs that were in the vicinity of
established quiet zones by using buffer zones of varying sizes and then investigating within
range HRGCs that may have histories of high crash frequencies and crash severities. A risk index
assessment was made for the HRGCs using the FRA’s Quiet Zone (QZ) Calculator. The quiet
zone risk index represents the average severity weighted collision risk for all public HRGCs that
are part of a quiet zone and includes added risk caused by the lack of a train horn and risk
reductions caused by the implementation of FRA approved supplemental safety measures
(SSMs). Based on crash histories and the QZ Calculator results, improvement suggestions were
developed for specific HRGCs in Lancaster County.

6.2 HRGC Consistency Assessment

Chapter 4 described creation of the GIS database for Lancaster County. The consistency
analysis was based on this GIS database with the first step of buffer creation around fifteen
existing HRGCs comprising of quiet zones. Buffers of 0.25 mile, 0.5 mile,1 mile, 2 mile, 3 mile
and 5 mile radii were created to identify gated non-quiet zone HRGCs for consideration in the

consistency analysis. Figure 6.1 shows buffers of varying size around quiet zone HRGCs in
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Lancaster County. The number of non-quiet zone gated HRGCs within a buffer increased as the

buffer size around existing quiet zone HRGCs increased.
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Figure 6.1 Buffers of Varying Size Around Existing Quiet Zone HRGCs in Lancaster County

Table 6.1 shows the results of different buffers and the corresponding HRGCs with their
respective crash history. The FRA QZ Calculator was used to assess the risk index for gated
crossings that were within the 5-mile buffer (Figure 6.2). These HRGCs were visited for
consistency assessment. As quiet zone HRGCs are distinguished by the presence of FRA
approved SSMs, the primary criteria for consistency was the practicality of installing SSMs at

non-quiet zone HRGCs.
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Table 6.1 Results of Buffers of VVarying Size and Corresponding HRGC Crash Histories

Buffer Size > 0.5 mi 1 mi 2mi 3mi 5mi Crash | Year |Fatalities| Injured
Count | Xing# | Count | Xing# | Count | Xing# | Count | Xing# [ Count | Xing#
# of Gated Non-QZ 3 7 13 19 24
| 3 064129E 4 064129E 6 064129E 9 064129E | 2017 0 0
072946C 072946C 072946C 072946C
083884 083884 083884 083884M
083886B 083886B 083886B
With SSMs 083890R 083890R
815572E 815572E
083891X
083895A
083900U
2 064130Y 4 064130Y 9 064130Y 13 064130Y 15 064130Y | 2009 | 0
064359F 064359F 064359F 064359F 064359F
083044 083044 083044 083044D | 2007 | 0
083045K 083045K 083045K 083045K | 2017 2 0
083885U 083885U 083885U
083048F 083048F 083048F
083046S 083046S 083046S
Without SSMs 098443] 098443] 098443]
074945C 074945C 074945C
083528S 083528S | 2011 0 0
083519T 083519T
083518L 083518L
074934P 074934P | 2013 0 0
077809M
070129T
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Cancel Change Scenario: | TEST_ 59367 v Continue
Crossing  [Street |T|-=|f'ﬁc|warning Device Pre-S5M |55M|Rislc
064130¥ West A Street 8600 Gates 0 0 |450.31 MODIFY
0820440 |South Folsom Street 4880 Gates o 0 450.51 MODIFY
083045K West South Street 3790 Gates 0 0 |30,145.09] mopiry
0830465 West Van Dorn Street 3990 Gates ] ] 430.51 MODIFY
083048F S CODDIMGTON ST. 425 Gates o o 561.62 MODIFY
* Only Public At Grade Crossings are listed, Summary
Click for Supplementary Safety Measures [S5M] Proposed Quiet Zone: TEST
- T H New 24-h z
Click for ASM spreadsheet:  ASM | ® MNoteiThe uss of ﬂte = cur
ASMs requires 2n application to and approval from the Scenario: TEST_39367
FRA Estimated Total Cost: 50,00
MNationwide Significant Risk '
Threshold: 13811 .00
Risk Index with Homns: 2844.04
Quiet Zone Risk Index: 6411.85
= Select

Temporary closure of a public highway-rail grade crossing,

Permanent closure of a public highway-rail grade crossing,

Grade separation of a public highway-rail grade crossing,

4-Quad gates upgrade from 2-quad gates, no vehicle presence detection,

4-Quad gates upgrade from 2-quad gates, with medians, no vehicle presence detection,
4-Quad gates upgrade from 2-quad gates, with vehicle presence detection,

4-Quad gates upgrade from 2-quad gates, with medians and vehicle presence detection,
4-Quad gates new installation, no vehicle presence detection,

4-Quad gates new installation with medians and no vehicle presence detection,
4-Quad gates new installation with vehicle presence detection,

4-Quad gates new installation with medians and vehicle presence detection,
Mountable medians with reflective traffic channelization devices,

Non-Traversable Curb Medians with or without Channelization Devices, and
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e One-way Streets with gates.
Many of these SSMs are not practical to implement at the Lancaster County HRGCs under
consideration for consistency assessment. The two realistic options for Lancaster County HRGCs
are mountable medians with reflective traffic channelization devices and the non-traversable
curb medians with or without channelization devices.

6.3 Recommendations for Lancaster County HRGCs

The general recommendation for gated HRGCs in Lancaster County that have a history
of crashes or a high FRA QZ Calculator risk index is the installation of mountable medians with
reflective traffic channelization devices (vertical panels or tubular delineators) or non-traversable
curb medians with or without channelization devices. However, many HRGCs may have specific
characteristics that prevent or limit adoption of this general recommendation. For example, a
non-paved crossing surface may limit installation of a raised median. Therefore, site
characteristics must be taken into account before consideration of the general recommendation.
Based on the analysis conducted in this research study, Table 6.2 presents measures that may be

considered for implementation at the listed HRGCs.
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Table 6.2 Suggested Improvements for Consideration at Selected Lancaster County HRGCs

Crossing | Crossing Street | Risk Non-traversable Curb  [Traversable/Mountable | Median and Mountable
1D Index Median, w/ or w/t Channelization Device Channelization Device
channelization (vertical (vertical panels or (vertical panels or tubular
panels or tubular tubular delineators) delineators)
delineators)
074945C  |N 162nd St 11626.13 X (one side is unpaved)
074934P  |N 98th St 12839.29 X (one side is unpaved)
098443] 84th St 39187.31 X (one side is unpaved)
064129E  |Adams St 138020 Planned for Grade Separation
064359F  |A St 47.43 X (one side may block
roadway)
064130Y  |West A St 450,51 X (one side may block
driveway)
083044D  [South Folsom St 450.51|X
083045K  [West South St 30146.09|X
083046S  |West Van Dorn St 450.51 X
083048F S Coddington St 155.64 X
072946C  |Pioneers Blvd 245.61 X (limited train traffic)
083884M | 14th St 587.16 X (complex HRGC, needs
further study)
083885U  |Southwood Dr 200.95 X (narrow road, may block
driveway)
083886B  |S 27th St 200.95 X
083890R  |S 40th St 266.71 X
083891X S 48th St 307.24|X X
083895A  |S 56th St 9045.45 X (complex HRGC, may
not work)
077809M |S 70th St 4518.91 X
815387K  |HWY 79 7037.14 X
815572 |Northwest 12th St | 5544.63 X (very short distance on
one side)
070129T  |W A St 427.32 X (one side is unpaved, may
block maintenance road)
083518L  |Main St (Roca) | 3040031 < (O Side may block
roadway for the factory)
083519T  |Roy St (Roca) 14799.53 ?;;3;19 side is unpaved
083528S  [Panama Rd 31229.56|X
083274E  [3rd St (Firth) 2421356 < (One side may block
roadway for the factory)

Note: an ‘X’ indicates a recommendation for consideration
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Chapter 7 Summary and Recommendations

This chapter provides a summary of the research effort and the recommendations
pertaining to the outcomes from this research as well as future efforts.
7.1 Summary

This research had two objectives: to update the 1999 Nebraska Accident Prediction
Model for HRGCs and to develop guidelines for improving safety at urban rail crossings that are
not designated quiet zones but are in vicinity of existing quiet zone crossings. HRGCs located in
Lancaster County, Nebraska were candidates for the second objective. The 1999 Nebraska
Accident Prediction Model is dated and needed an update in view of the availability of new
modeling techniques and changing transportation patterns.

FRA crash and HRGC inventory data were utilized for estimation of the new model.
Lancaster County HRGCs were visited to verify HRGC inventory data and this effort was
subsequently extended to eight additional Nebraska counties. Inventory information for some
HRGCs was validated using NDOT’s PathWeb system. The combined effort of field visits and
use of the PathWeb system resulted in inventory verification of 742 HRGCs in Nebraska. In total
2,911 values were corrected and 1,841 missing values were added to the HRGC inventory
database while 33 HRGC:s in the database were either abandoned, private crossings listed as
public or altogether non-existent. Corrected Nebraska HRGC inventory and reported HRGC
crashes (2008-2019) were combined to obtain a dataset; model estimation utilized 2008-2018
data and the 2019 data were used for validation of model predictions.

The FRA’s New Model for HRGC Accident Prediction and Severity was used for
guidance in the model estimation process. Several model formulations were explored for the

2020 Nebraska Crash Prediction Model. Based on the data characteristics, statistical test results,
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prediction performance and validation, a Poisson regression model with scaled parameters was
chosen as the 2020 Nebraska Crash Prediction Model.

Lancaster County HRGCs that are not designated as quiet zones were assessed for safety
improvements (using SSMs) to reduce the chances of violating drivers’ expectations. Gated
HRGCs were selected based on proximity to existing quiet zone crossings and their risk index as
calculated by the FRA QZ Calculator. The selected HRGCs were visited in the field and
recommendations developed for each HRGC. However, the general guidance revolves around
application of two SSMs that are more practical compared to the other options available via FRA
approved SSMs. The guidance is to consider installation of mountable medians with reflective
traffic channelization devices (vertical panels or tubular delineators) or non-traversable curb
medians with or without channelization devices at non-quiet zone gated HRGCs that are in
proximity of established quiet zones.

7.2 Recommendations

Based on the results of this research study, the following recommendations are made to
NDOT (and/or other relevant agencies).

e Adopt the 2020 Nebraska HRGC Crash Prediction Model in lieu of the 1999 Nebraska
Accident Prediction Model as the newer 2020 model better predicts expected crashes
compared to the 1999 model as well as compared to the new FRA’s Accident Prediction
Model.

e Consider installation of mountable medians with reflective traffic channelization devices
or non-traversable curb median with or without channelization devices at gated HRGCs

that are in proximity (5-mile radius) of established quiet zones.
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A complete update of the statewide HRGC inventory is recommended to remove errors
and missing values from the existing data.

Establish an update cycle for the Nebraska HRGC Crash Prediction Model to prevent it
from becoming dated; a 5-year update cycle appears reasonable.

Crash severity was not considered in this research but it is an important element of safety.

Therefore, a crash severity prediction model is recommended for future research.
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Appendix A

Variable descriptions for HRGC inventory.

Variable Descriptions
FRA crossing inventor
databas% field ’ RIMS Value

CrossinglD Crossing Number

ReportingAgencyTypelD

ReasonID Reason

RevisionDate

Latest Inventory Approve
LastUpdated Date/Time y APP
Railroad Primary Operating Railroad
. 0=1In

Nearest In or Near City 1 = Near

CityName City

Street Street or Road Name
1 = Highway

XPurpose Crossing Purpose 2 = Pathway, Pedestrian
3 = Station, Pedestrian
11 = Open Space
12 = Residential
13 = Commercial
14 = Industrial

DevelTypID Type of Land Use 15 = Institutional
16 = Farm
17 = Recreational
18 = RR Yard
0=No

. . 1=24hr

Whistban Quiet Zone 5 = Partial
3 = Chicago Excused

Latitude Latitude

Longitude Longitude

MilePost RR Milepost

TotTrk

MainTrk Main Tracks

SidingTrk Siding Tracks

YardTrk Yard Tracks

TransitTrk Transit Tracks

IndustryTrk Industry Tracks

OthrTrk
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Signaling for Train Operation: Is

Sgnleqp Track Equipped with Train Signals?
NoSigns Are There Signs or Signals? ; : \N(gs
XBuck Number of Crossbuck Assemblies
StopStd Number of STOP Signs (R1-1)
YieldStd Number of YIELD Signs (R1-2)
Advance Warning Signs
AdvWarn http://www.trafficsign.us/w10.html
Advance Warning Signs: W10-1
AdvW10 1
EXEMPT
Advang;a Warning Signs: W10-2
AdvW10 2
AdvW10_3
AdVW10_4 /g \
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http://www.trafficsign.us/w10.html

AdvW10_11

Advance Warning Signs: W10-11

AdvW10_12

PaveMrkIDs

Pavement Markings

0 = None

1 = Stop Lines

2 = RR Xing Symbols
3 = Dynamic Envelope

Channel

Channelization Devices/Medians

1 = All Approaches

2 = One Approach

3 = Median — All
Approaches

4 = Median — One Approach
5 = None

SSM

0 =None

1 = normal medians

2 = Non-Traversable Curb
Medians with or without
Channelization Devices

3 = Mountable medians with
Reflective Traffic
channelization Devices

4 = four quadrant gate
systems,

5 = one-way streets with
gates,

6 = temporary or permanent
crossing closures

EnsSign

ENS Sign (1-13) Displayed?

REPORT EMERGENCY
OR PROBLEM

T0 1-800-555-5555
CROSSING 836 597 H

1=Yes
2=No

OthSgn

Other MUTCD Signs?

1=Yes
2=No
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https://mutcd.fhwa.dot.gov/ser-
shs_millennium_eng.htm;
http://www.trafficsign.us/

OthSgnl MUTCD Code (1)
OthDesl Other MUTCD Signs Count (1)
OthSgn2 MUTCD Code (2)
OthDes2 Other MUTCD Signs Count (2)
OthSgn3 MUTCD Code (3)
OthDes3 Other MUTCD Signs Count (3)
Gates Count of Roadway Gate Arms
1 =2 Quad
GateConf Gate Configuration 2 =3 Quad
3 =4 Quad
. : 4 = Full (Barrier) Resistance
GateConfType Gate Configuration Type 6 = Median Gates
Number of Cantilevered (or
Bridged) Flashing Light Structures
Over Traffic Lane
FlashOv
Number of Cantilevered (or
FlashNov Bridged) Flashing Light Structures
Not Over Traffic
. . : 0 = None
CFlashType E?gnﬁll_?_\;%r:g (or Bridged) Flashing 1 = Incandescent
2=LED
Mast-Mounted Flashing Lights:
Mast (Post) Count
FlashPost Qe
|
. . i 0 = None
FlashPostType Mast-Mounted Flashing Lights: 1 = Incandescent
Light Types 5= LED
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https://mutcd.fhwa.dot.gov/ser-shs_millennium_eng.htm
https://mutcd.fhwa.dot.gov/ser-shs_millennium_eng.htm
http://www.trafficsign.us/

Mast-Mounted Flashing Lights: 1=Yes
BkI_FlashPost Back Lights? 2=No
Mast-Mounted Flashing Lights: 1=Yes
Sdl_FlashPost Side Lights? v 2= No
FlashPai Total Count of Flashing Light Pairs
Bells Number of Bells
HWynISig Does Neart_)y I—!wy. Intersection 1=Yes
Have Traffic Signals? 2=No

HwtrfPsigsdis

Highway Traffic Pre-Signals:
Storage Distance

HwtrfPsigIndis

Highway Traffic Pre-Signals: Stop
Line Distance

WdCode
TraficLn Number of Traffic Lanes Crossing
Track
1 = One-way Traffic
TraflnType Traffic Lane Type 2 = Two-way Traffic
3 = Divided Traffic
1=Yes
HwyPved Is Roadway/Pathway Paved? 2 = No
Downst Does Track Run Down a Street 1=Yes
(YIN)? 2=No
[llumina Is Crossing Illuminated? ; : \N(gs
XSurfWidth Crossing Surface: Width (Feet)
XSurfLength Crossing Surface: Length (Feet)
11 =1. Timber
12 = 2. Asphalt

XSurfacelDs

Crossing Surface (Main Track)

13 = 3. Asphalt and Timber
14 = 4, Concrete

15 = 5. Concrete and
Rubber

16 = 6. Rubber

17 = 7. Metal

18 = 8. Unconsolidated

19 = 9. Composite

20 = 10. Other (specify)

Intersecting Roadway Within 500

1=Yes

HwyNear Feet? 2=No
. Approximate Roadway Distance
HwynDist (Feet) (Feet)
1=0°-29°
XAngle Smallest Crossing Angle 2 =30° - 59°
3 =60° - 90°
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Commercial Power Available

ComPower Within 500 Feet (Y/N)?
Functional Classification: 0 = (0) Rural
HwyClassCD Development 1 =(1) Urban

HwyClassrdtplD

Functional Classification: Road
Function

11 = (1) Interstate

12 = (2) Other Freeways and
Expressways

13 = (3) Other Principal
Arterial

16 = (4) Minor Arterial

17 = (5) Major Collector

18 = (6) Minor Collector

19 = (7) Local

HwySpeed

Posted Highway Speed (mph)

open

flash

gate

NDOT Crossing Number:

Structure Number:

Highway District:

NDOT County Map Reference:

NDOT Reference Post:

NDOT-Specified Location:

NDOT Control Number:

NDOT Highway Number:

Passenger Trains Per Day:

Passenger Train Speed:

Track Category Code:

Storage Distance:

Approach Surface Type:

Approach Surface Width:

Grade First:

Grade Second:

First Location of Change:

Second Location of Change:

Distance Between Tracks (RRX
Width):

Type of Service:

NDOT Narrative:

NDOT Crossing Rank:
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Highway Rail Accident/Incident Variables (FRA Form 6180.57)

Appendix B

FIELD

NAME DEFINITION Values

amtrak amtrak involvement

iyr year of incident

imo Month of incident

railroad Railroad code (reporting RR)

incdtno Railroad assigned number

iyr2 Year of incident

imo2 Month of incident

2 Railroad code (other RR involved)

incdtno2 Other railroad assigned number

iyr3 Year of incident

imo3 Month of incident

3 Rai_lroad code (RR responsible for track
maintenance)

incdtno3 RR assigned number

dummy1 Blank data expansion field
# of injured for reporting railroad calculated

casinjrr from
F6180.55a’s submitted

gxid Grade crossing id number

year Year of incident

month Month of incident

day Day of incident

timehr Hour of incident

timemin Minute of incident

ampm Am or pm

station Nearest timetable station

county County name (see FIPS codes for associated
code)

state FIPS state code

region FRA designated region

dummy?2 Blank data expansion field

city City name (see FIPS codes for associated
code)

highway Highway name

vehspd Vehicle estimated speed

(blank = unknown)
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typveh

Highway User

A = auto G = school bus

B = truck H = motorcycle

C = truck-trailer J = other motor vehicle.
D = pick-up truck K = pedestrian

E =van M = other

F =bus

vehdir

Highway user direction

1 =north 3 = east
2 =south 4 = west

position

Position of highway user

1 = stalled or stuck on crossing*

2 = stopped on crossing

3 = moving over crossing

4 =trapped on crossing by traffic*
5 = blocked on crossing by gates**

rrequip

RR equipment involved

1 = train (units pulling) A = train pulling (RCL)
2 = train (units pushing) B = train pushing (RCL)
3 = train (standing) C = train standing (RCL)

4 = car(s) (moving) D = EMU Locomotive(s)*

5 = car(s) (standing) E = DMU Locomotive(s)*
6 = light loco(s) (moving)

7 = light loco(s) (standing)

8 = other

rrcar

Position of car unit in train

typacc

Circumstance of accident

1 =rail equipment struck highway user
2 =rail equipment struck by highway user

hazard

Entity transporting hazmat

1 = highway user 3 = both
2 = rail equipment 4 = neither

temp

temperature in degrees Fahrenheit

visiblty

Visibility

1 = dawn 3 = dusk
2 =day 4 = dark

weather

Weather conditions

1 =clear 4 = fog
2 =cloudy 5 = sleet
3 =rain 6 = snow

typeq

Type of consist

1 = freight train

2 = passenger train(pulling)*
3 = commuter train(pulling)*
4 = work train

5 =single car

6 = cut of cars

7 = yard/switching

8 = light loco(s)

9 = maint/inspec car

A = special MoW equipment
B=passenger train (pushing)**
C=commuter train (pushing)**
D=EMU**

E=DMU**

typtrk

Type of track

1 =main 3 = siding
2 =yard 4 = industry

trkname

track identification

trkclas

FRA track class: 1-9, X

nbrlocos

Number of locomotive units

69




nbrcars Number of cars
trnspd Speed of train in miles per hour
P (if field is blank = unknown)
typspd Train speed type E = estimated R = recorded Blank = unknown
trndir Time table direction 1=north 2=south 3=east 4=west
signal Type of signaled crossing warning
1 = both sides
locwarn Location of warning 2 = side of vehicle approach
3 = opposite side of vehicle approach
warnsig C_rossmg warning interconnected with 1= yes 2 = no 3 = unknown
highway signal
lights Crossing Illuminated by Street Lights or
g Special Lights
standveh Driver passed highway standing vehicle
Highway user went behind or in front of
train2 train
and struck or was struck by second train
1 = went around the gates*
2 = stopped and then proceeded
3 =did not stop
4 = stopped on crossing
motorist Action of highway user 5 = other
6 = went around/thru temporary barricade (if yes,
see instructions)***
7 = went thru the gate***
8 = suicide/attempted suicide***
1 = permanent structure
2 = standing RR equipment
3 = passing train
view Primary obstruction of track view 4 f topogra_phy
5 = vegetation
6 = highway vehicles
7 = other
8 = not obstructed
vehdmg Highway vehicle property damage in $
driver Driver was 1 =killed 2 = injured 3 = uninjured
inveh Driver in vehicle l=yes2=no
Total killed for railroad as reported on
totkld F6180.57
totin Total injured for railroad as reported on
) F6180.57
totoce thal # of vehicle occupants (including
driver)*
incdrpt F6180.54 filed: 1=yes2=no
jointed Indicates railroad reporting
typrr Type railroad — ICC categories 1st position indicates class 1, 2, or 3 railroad
dummy3 Blank data expansion field
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# killed for reporting RR — calculated from

caskldrr F6180.55a’s submitted
dummy4 Blank data expansion field
01 = gates 07 = cross bucks
02 = cantilever FLS 08 = stop signs
Type of warning device at crossin 03 = standard FLS 09 = watchman
crossing (s)g?ies of 2 di i? codes) 9 04 = wig wags 10 = flagged by crew
g 05 = highway traffic 11 = other (specify)
signals 12 = none
06 = audible
narrlen Length of narrative
dummy5 Blank data expansion field
yeard 4 digit year of incident
division Railroad division
public Public crossing 1 = public 2 = private
cntycd FIPS county code
stenty FIPS state and county code
1=highway user 3=both
hzmrlsed Hazmat released by 2=rail equipment 4=neither
Blank=unknown
hzmname Name of hazmat released
hzmgnty Quantity of hazmat released
hzmmeas Measure used in hazmat quantity field
sigwarnx Further definition of signal field
. . . 1=yes 2=no
whisban Whistle ban in effect 3=not provided blank=unknown
drivage Highway user’s age
drivgen Highway user’s gender 1 = male 2 = female blank = unknown
leontrn Total # of people on train
P (includes passengers and crew)
sshl Special study block 1
ssh2 Special study block 2
userkld # of highway-rail crossing users killed as
reported by railroad on F6180.57
userini # of highway-rail crossing users injured as
) reported by railroad on F6180.57
# of railroad employees Killed as reported
rrempkld by
railroad on F6180.57
# of railroad employees injured as reported
rrempinj by
railroad on F6180.57
# of train passengers killed as reported by
passkld railroad on F6180.57
assini # of train passengers injured as reported by
P ) railroad on F6180.57
subdiv Railroad Subdivision
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roadcond

Roadway Conditions

A=dry

B = wet

C = snow/slush

D=lce

E = sand, mud, dirt, oil, gravel
F = water (standing, moving)
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Table C.1 Performances of all candidate models. Trained on 2008-2016 data and validated on 2017 data (observed crash frequency

was 18).
Percentage
Logarithm | Predicted | difference in
Candidate models AIC MSE RMSE
score outcome prediction
results
All variables 2718.188 | 0.006198456 | 0.078730274 | 0.03429069 | 28.4339 +57.97%
Small 2718.7 0.00614256 | 0.078374486 | 0.03580901 | 28.43493 +57.97%
Selected variables based on AIC 2713.919 | 0.006179902 | 0.078612353 | 0.03616989 | 28.4335 +57.96%
Selected variables based on LR
2710.83 | 0.006169171 | 0.07854407 | 0.03430084 | 28.43382 +57.97%
Poisson | test
Selected variables based on
2078.909 | 0.005816272 | 0.076264487 | 0.0356827 | 27.32421 +51.80%
stepwise selection
Mixed effects all variables 2719.8 0.006094613 | 0.078068002 | 0.03575563 | 28.43491 +57.97%
Mixed effects small 2717.6 0.006188576 | 0.078667503 | 0.03657963 | 28.43394 +57.97%
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Mixed effects all variables based

2717.007 | 0.006155857 | 0.07845927 | 0.03626977 | 28.43361 +57.96%
on AIC
Mixed effects all variables based
2726.093 | 0.006112371 | 0.078181654 | 0.03621087 | 28.43511 +57.97%
on LR test
All variables 2674.205 | 0.08721682 0.29532494 | 0.03616989 | 43.53799 | +141.88%
Small 2700.951 | 0.006124286 | 0.078257818 | 0.0525844 | 28.42062 +57.89%
Zero-
Selected variables based on AIC 2698.154 | 0.006209432 | 0.078799949 | 0.05655367 | 28.44069 +58.00%
inflated
Selected variables based on
Poisson 2699.15 | 0.005937432 | 0.077054734 | 0.05277615 | 28.43731 +57.99%
stepwise selection
Mixed effects small 2664.1 0.006117588 | 0.078215011 | 0.03761002 | 17.73504 -1.47%
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Table C.1 (cont.)

Percentage
difference
Logarithm | Predicted
Candidate models AlC MSE RMSE in
score outcome
prediction
results
Raw - 0.0064 0.08 - 0.2 -98.89%
NDOT
Weighted - 0.006409604 0.08006 - 5.74 -68.11%
model
Normalized - 0.006390404 0.07994 - 3.48 -80.67%
Raw - 0.006366444 0.07979 - 6.39 -64.50%
USDOT | Weighted - 0.006393602 0.07996 - 10.86 -39.67%
model Normalized - 0.006371232 0.07982 - 6.62 -63.22%
New ZINB model variables 2716.415 | 0.006104412 0.07813 0.03590733 | 28.43499 | +57.97%
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Table C.2 Performances of all candidate models. Trained on 2008-2017 data and validated on 2018 data (observed crash frequency

was 35).
Percentage
Logarithm | Predicted | difference in
Candidate models AlC MSE RMSE
score outcome prediction
results
All variables 2183.977 | 0.01000041 0.10000205 | 0.06935734 | 20.98835 -40.03%
Small 2224541 | 0.009691069 | 0.098443227 | 0.06901735 | 21.19004 -39.46%
Selected variables based on AIC 2192.455 | 0.009842123 | 0.099207475 | 0.06874995 | 20.98958 -40.03%
Selected variables based on LR
2195.8 0.00985581 | 0.099276432 | 0.06818701 | 20.98931 -40.03%
Poisson | test
Selected variables based on
2205.661 | 0.01274362 | 0.112887643 | 0.06421917 | 26.03446 -25.62%
stepwise selection
Mixed effects all variables 2223.318 | 0.009684737 | 0.098411061 | 0.06961588 | 21.18985 -39.46%
Mixed effects small 2184.44 0.01000043 0.10000215 | 0.06929384 | 20.98839 -40.03%
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Mixed effects all variables based

2190.078 | 0.009836715 | 0.099180215 | 0.06793833 | 20.98891 -40.03%
on AIC
Mixed effects all variables based
2196.825 | 0.009848963 | 0.099241942 | 0.06820578 | 20.98941 -40.03%
on LR test
All variables 2178.809 | 0.01000117 0.10000585 | 0.07162996 | 20.98894 -40.03%
Small 2206.44 | 0.009657594 | 0.098273058 | 0.1193884 21.1899 -39.46%
Zero-
Selected variables based on AIC 2186.503 | 0.009828321 | 0.099137889 | 0.08618688 | 14.16269 -59.54%
inflated
Selected variables based on
Poisson 2893.301 | 0.01274362 | 0.112887643 | 0.1071404 | 27.39226 -21.74%
stepwise selection
Mixed effects small 2170.543 | 0.009791449 | 0.098951751 | 0.08247168 | 14.0481 -59.86%
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Table C.2 (cont.)

Percentage
difference
Logarithm Predicted
Candidate models AIC MSE RMSE in
score outcome
prediction
results
Raw - 0.009883361 | 0.099415094 - 0.1469295 | -99.58%
NDOT
Weighted - 0.009854559 | 0.099270131 - 5.172267 -85.22%
model
Normalized - 0.009835792 | 0.099175562 - 3.189546 -90.89%
Raw - 0.009861255 | 0.099303852 - 4871511 -86.08%
USDOT | Weighted - 0.009853375 | 0.099264168 - 9.12246 -73.94%
model Normalized - 0.009840335 | 0.099198463 - 5.635839 -83.90%
New ZINB model variables 2164.743 | 0.009969616 | 0.099847964 | 0.07271544 | 20.99934 -40.00%
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