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ABSTRACT

Approach slab is a structural concrete slab that spans from the backwall of the abutment (i.e. end
of the bridge floor) to the beginning of the paving section. The purpose of the approach slab is to
carry the traffic loads over the backfill behind the abutments to avoid differential settlement that
causes bumps at the bridge ends. Cast-in-place concrete approach slab is the current practice in
US with various spans, reinforcement, thicknesses, joints, and concrete covers. NDOT has
observed premature cracking in a significant number of approach slabs, which could result in a
shorter service life and costly repairs/replacements as well as traffic closures and detours. The
objective of this project is to investigate the extent and causes of approach slab cracking and
propose necessary design, detailing and construction changes that could mitigate this deterioration.
The literature on current approach slab practices by other state DOTSs is reviewed and an analytical
investigation is conducted using finite element analysis to evaluate the performance of different
approach slabs under live load, volume changes due to shrinkage and temperature, and soil friction.
Several parameters are considered in this investigation, skew angle, bridge width, joint location,
and connection type. Analysis results indicate that volume changes cause high tensile stresses
along abutment line, which result in the observed cracking. Several design changes are proposed
and precast concrete approach slab alternatives are considered as promising solutions that could

result in longer service life and accelerated construction.
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Chapter 1. Introduction

1.1. Background

The approach slab is a structural concrete slab designed to span from the backwall of the abutment
(i.e. end of the bridge floor) to the grade beam or sleeper slab where the paving section begins. The purpose
of the approach slab is to carry the dead load and live load of traffic over the backfill behind the abutments
to avoid possible settlement of the backfill that causes bump at the end of the bridge. Despite the simplicity
of cast-in-place (CIP) concrete approach slab designed as a simply supported one-way reinforced concrete
slab, it has been reported by Nebraska Department of Transportation (NDOT) that a significant number
approach slabs experience cracking at early ages. Figure 1 shows examples of this cracking that is primarily
longitudinal cracking starting at and perpendicular to the backwall support line. This cracking results in
premature deterioration of the approach slabs, shorter service life, and costly repairs/replacements. The

causes of this cracking are not clearly understood.

Figure 1.1: Cracking of bridge approach slabs



On the other hand, NDOT recently considered the use of precast concrete (PC) approach slabs to
achieve higher quality and faster construction than CIP concrete approach slabs. The first implementation
of precast concrete approach slabs was completed in the summer of 2018 in the construction of Belden-
Laurel Bridge. Several lessons were learned from this project, which could be considered to improve the
design, fabrication, and construction of precast concrete approach slabs. Therefore, it is important and
timely to re-visit the current design, detailing, and construction practice of current CIP and PC approach

slabs in order to improve their durability and speed of construction.

1.2. Objectives

The main objectives of this research project is to:
1. Investigate causes of premature deterioration of CIP concrete approach slabs
2. Propose a refined design and detailing of CIP concrete approach slabs
3. Propose design alternatives to enhance the design/construction of PC approach slabs
4

Recommend changes to NDOT approach slab policy
1.3. Report Outline

This report consists of six chapters as follows.
Chapter 1 — Introduction: This chapter discusses the background of the problem and research

objectives

Chapter 2 — Cast-in-Place Approach Slabs: The chapter presents the current practices of several

DOTs at different geographical regions in designing and detailing of CIP concrete approach slabs. Results
of recent surveys were also summarized to present the differences in approach slab design and construction

practices in US.

Chapter 3 — Condition Evaluation: The chapter presents the outcome of three field visits to

observe the cracking in bridge approach slabs and paving sections. Also, analysis of element inspection
data of approximately 500 records in NDOT database is presented to determine the effect of parameters,

such as age, skew angle, bridge width, and traffic volume, on the cracking of approach slabs.

Chapter 4 — Analytical Investigation: The chapter presents the finite element analysis conducted

to study the effect of skew angle, bridge width, longitudinal joint, abutment connection, and soil friction on
the stresses in the approach slabs under live loads and volume changes due to shrinkage and temperature.

It also presented the proposed changes to reduce these stresses and control approach slab cracking.



Chapter 5 — Precast Concrete Approach Slabs: The chapter presents the different types of

precast concrete approach slabs and the designs proposed by PCI as well as current practices in lowa, South
Carolina, Illinois, Missouri, and Nebraska. Design alternatives are proposed using both high-early strength
concrete and ultra-high performance concrete in combination with Grade 60 steel and high strength steel.

Chapter 6 —Conclusions and Lessons Learned: This chapter presents a summary of the report

main conclusions drawn from the finite element analysis of approach slab, design and detailing of CIP and
precast concrete approach slabs and design recommendations. It also presents the lessons learned from the
production and construction of precast concrete approach slabs.



Chapter 2 Cast-in-Place Concrete Approach Slabs

2.1. Introduction

This chapter presents the literature review on the current practices of different US
Departments of Transportation (DOTS), including NDOT, in designing and detailing cast-in-place
(CIP) concrete approach slabs. Recent surveys that shows the difference in approach slab
dimensions and reinforcement among DOTSs are discussed as well as the common deterioration
mechanisms and their possible causes. Figure 2.1 shows the plan view of a typical approach slab

and the terminology used to describe its parameters.

Skew Bridge
—= Angle Width (W)

Longitudinal Reinforcement

.~ length (L) ——=

Figure 2.1: Approach Slab Terminology

2.2. Current Practices

The current practice of CIP concrete approach slabs in US vary among state DOTs with respect to
the following parameters: slab length, slab thickness, concrete cover, top and bottom longitudinal
and transverse reinforcement, and connections/joints detailing. Below is brief description of these
parameters for a selective group of state DOTSs.
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2.2.1. Nebraska

According to NDOT Bridge Office Policies and Procedures (BOPP, 2016), approach slab is
designed as one-way slab simply supported by the abutment and the grade beam as shown in Figure
2.2 (BOPP, 2016). The grade beam is a reinforced concrete beam parallel to the abutment,
supported by piles to minimize settlement, and extended to cover sidewalk. The minimum span
length of approach slab is 20 ft. measured at the centerline of roadway from the end of bridge floor
to centerline of grade beam and the minimum thickness is specified as 14 in. The main longitudinal
reinforcement is #8 @ 6 in. and #5 @ 12 in. for bottom and top reinforcement, respectively. The
transverse reinforcement is #5 @ 12 in. and #5 @ 9 in. for top and bottom reinforcement,
respectively. The main longitudinal reinforcement cover is 2.5 in. and 3 in. for top and bottom
reinforcement, respectively. The approach slab is anchored to the abutment using #6 bar bent at
45 deg. inside the approach slab with adequate embedment length and cover and spaced at 12 in.
The approach slab could be poured separate from the bridge deck or poured continuously with the
deck but partially separated using a galvanized plate. Figure 2.2 shows the end of floor detail for
each of the two cases. Expansion/contraction joint is placed over the grade beam using joint filler
and joint sealant between the approach slab and paving section. Paving section has the same
thickness as the approach slab and is anchored to the grade beam using 45 deg. bent bars. It extends
for 30 ft to be connected to the roadway pavement using horizontal dowels. Approach slab is
resting on a granular backfill and half of the grade beam without a connection, as shown in section
B-B, to allow its movement due to temperature changes.

Beginning of —————— 30'-0" (Paving Section) 20'-0" [=— Abutment No. |
Paving Section (Approach Sectlon) @ End of Floor
Sta 145+94.07 (SB) Sta. 146+44.07 (SB)
Sta. 146+07.53 (NB) A Sta. 146+57.563 (NB)
S S‘ 2-N402 (Typ.) r See Detall "F"
i el /&:

14°

~ LA Field Bend \TYP' -
3|8 3§
S| £ 2-N50/ S £
8 E |3
3. 3 B & N
= = pu B ) =5
4= 9 " 6 = € Sout
Sly @ U 20-N501 @ 12" ctrs. Sl
o2 5 (Top) o &2 Roadwa
S & PN W
o© s 25-N503 @ 12" ctrs. || 12"\ 27-ns01 @ 9" cm\ @
2|® o Max. (Top & Bottom) (Bottom) | @
Sl b SIE=]
=D = @
ST C & T
S| 9-N505 @ 12" ctrs. | g

Max. (Top & Bottom) 5-N401 @ 12"
— N \ \ctrs. (Typ.)
Edge of clear ‘e
Roadway (Typ.) 6-N40! (To match C
' N505)(Typ.) \k@ Grade Beam No. |
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End of Floor —=—

Approach Section = 20'-0" @ € Roadway

20-N501 @ 12" ctrs. (Top)

- =

—~ 27-N501 @ 9" ctrs. (Bottom)
3|7
N Ns502 at 12" otrs. Max
:&‘ x N at ctrs. Max \

A601

@ 0 ga Gahanlzed plate —
extend from egge to edge

of deck, Rout and seal. ~ %o
e 1
-

F Encd of Floor

T

[ N
Anchor j——--\ _‘_Tﬁ
\ =

/
8 T | \ /
ALy | |
\ Construction
Joint

— .

To be used If approach slab Is
poured contlnuous with bridge deck.

@ Stablifze Piate durlng pour

| [
_AT END OF FLOOR
€ Expansion Joint| |
¢ Grade Beam i
Paving Sectlon | Approach Sectlon
4-'i4v- /,_. Jolnt Sealant
o | //
| (/ / 1" Preformeg Jolnt Fliier

LA

&.nf - w L / ,/" v w A d 'v"-'-: - '.
:l - - g R :

i g |
]

£, T 5 T oo
| \ =1 f & gl S | —Granular
X K e e e e - Backf
\ CAST RS S RS S 82
LN
| \ BN
\ \\»\
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SECTION B-B
Figure 2.2: NDOT Typical Approach Slab Design and Detailing
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2.2.2. California

According to Caltrans (2018), different types of CIP concrete approach slabs are available. Figure 2.3
shows only Type N (30) that is 30 ft long and 15 in. thick. Other types of structural approach are: Type R
(30), Type R (10), and Type EQ (10). Figure 2.4 shows the different abutment tie details based on movement
rating (MR). For MR greater than or equal to 2 in., #5 vertical tie is used at 9 in. spacing. Also, longitudinal
reinforcement is used normal to BB and EB lines while transverse reinforcement is always parallel to BB
and EB lines.

END OF i SEE "APPROACH SLAB
WINGWALL R S TRANSVERSE JOINT"
L]
_;)aﬂ. SEE NOTE A TABLE
— — | ROADWAY
FRONT FACE OP TIONAL R PAVEMENT
OF BARRIER 4 LONGITUDINAL
SEE "APPROACH Const _JOINT, \
L ANE
SLAB TRANSVERSE SKEW® @ . LINE,
JOINT" TABLE X3/ T
_________ BE OR EB S T P
AN \
A A \
A A
Ao
RETAINING WALL J“‘*——#EE&GE [ \
] (‘ _""“'5' Y |
?. il Fi ':.
L 30°-0" J Z 20°-0" Min ﬁ
- SKEW < 20° ' SKEW > 20°

NOTE A
Type E-1 Approach Slab shown, see
for Type E-2 details,

PLAN

PAY LIMITS FOR STRUCTURAL COMCRETE, APPROACH SLAB (TYPE N)

BB OR
EE 30"'0”
TRANSVER
+ - SEE "ABUTMENT TIE DETAILS" @ JEISTS Eg,ESéE
- L ’
NlC—J AE(——~ #5 @ 18 BOTH WAYS X-4 NOTE 2
. 7 i 'y
| V7 %\ \ /\ \{ /‘\ _)\_/\
=l | |
1] { | L]
N I \ o=
[as]
#5 86 N\ 41096 ioT& ‘\-FILTER FABRIC C 3" @ SLOTTED PLASTIC
LA NORMAL TO  pagalLEL TO PIPE, SEE NOTE 4
f LANE LINES [ aNE LINES WOVEN TAPE FABRIC '
Abut
BACKWALL GEOCOMPOSITE DRAIN, NOTE: Seat type abutment shown,

SEE NOTE 4

digphragm type abutment similar.

SECTION A-A

Figure 2.3: Caltrans Typical Approach Slab Design and Detailing
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JOINT SEAL
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PARALLEL TO
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B8 OR EB SBE NOTE 1
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SEE NOTE 1— \[% #
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BACKWALL —
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\ S |
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Figure 2.4: Caltrans Abutment tie Details

2.2.3. Washington

#5 |

#5 Cont Tot 4
PARALLEL

\TO BB OR EB

v—1/4" EXPANSION

JOINT FILLER

SEE NOTE 1

According to WSDOT (2019), the standard CIP concrete approach slab is 25 ft long and 13 in. thick as
shown in Figure 2.5. Dowels are used to connect it to the roadway pavement and 45 deg. bent bars are used
to connect it to the abutment. Longitudinal joints are either saw cut at lane lines or full-depth construction
joints are used. These joints are required for slabs wider than 40 ft with a maximum section width of 24 ft.

BRIDGE |
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"

BRIDGE APPROACH SLAB
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2 [APS] 45 -

BOTTOM:

(A2 Was @5 &A1 | Tes @ 5"
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X
5 TOP:
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Figure 2.5: WSDOT Approach Slab Design and Detailing

2.2.4. Missouri

According to MoDOT (2020), the standard CIP concrete approach slab is 20 ft long and 12 in. thick as
shown in Figure 2.6. Approach slab is resting to a 3 ft wide sleeper slab with expansion/contraction joint
with the paving section at one end, and 90 deg. bent bar anchors to the abutment at the other end. Approach
slabs are poured after and separate from the bridge deck on Type 5 aggregate base. Full-depth keyed
construction joints in the approach slab and sleeper slab should be aligned with the construction joint of the
bridge deck.
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2.2.5. lowa

According to lowaDOT (2020), there are multiple standards for CIP concrete approach slabs with 10 in.
and 12 in. thickness, variable and constant depth, singly and doubly reinforced slabs, and for fixed and
movable abutments. Figure 2.7 shows the 20 ft long and 12 in. thick constant depth approach slab that is
doubly reinforced and connected to single reinforced 20 ft long paving section in case of fixed abutment
(top figure), movable abutment (middle figure), and with sleep slab in case of slab bridges (bottom figure).
The figure also shows the pavement lug and wide joint in case of movable abutment.
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Figure 2.7: lowaDOT Approach Slab Design and Detailing

2.2.6. Colorado

According to CDOT (2020), the standard CIP concrete approach slab is 20 ft long and 12 in. thick as shown
in Figure 2.8. Approach slab is resting to a sleeper slab with 4 in. wide expansion/contraction joint with the
paving section at one end, and 90 deg. bent bar anchors to the abutment at the other end. Longitudinal
reinforcement is placed parallel to the centerline of the roadway, while transverse reinforcement is placed
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parallel to the abutment support line. When a hot mix asphalt overlay is used, a 2 in. deep saw cut joint

filled with sealant is used at the abutment support line.
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Figure 2.8: CDOT Approach Slab Design and Detailing
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Table 1 summarizes the current approach slab detailing for the five different U.S. states presented
earlier, which represent different geographic and climatic regions: California Department of
Transportation (Caltrans); Washington State Department of Transportation (WsDOT); Missouri
Department of Transportation (MoDOT); lowa Department of Transportation (lowa DOT);

Colorado Department of Transportation (CDOT).

Table 2.1. Summary of approach slab designs

State DOT Caltrans | \yspoT | MoDOT | lowaDOT | CDOT
(Type N 30)
Span (ft.) 30 25 20 20 20
Slab Thickness (in.) 15 13 12 12 12
Main Top #5 @18” #6@S” #5@12” #o@12” #4 @18”
Longitudinal . . . . .,
Reinforcement | Bottom | #10 @6 #8@5 #6 @5 #8 @12 #6 @6
Concrete Top 2 2.5 2 2.5 3
Cover (in.) | Bottom 2 2 2 2.5 3
Transverse Top #5@18” #5 @18”
. 12” 12” 12”
Reinforcement | Bottom |  #5 @6” #5@9” " @ " @ wa@
Abutment Edge Joint Vertical 45° bent 90° bent S:;?;tllgg_ 90° bent
Type (Figure 2.9) #5@9 #5@12 #5 @ 12 Steel Dowel #H @12
Horizontal Horizontal Resting on Sleeper Slab/ Resting on
Other Edge Joint Type | #6 dowel @ | 1.5 in. dowel | g horizontal | g
12" to @ 18in.to Sleeper dowels to Sleeper
. L Slab . Slab
paving paving paving
,ﬁ Approach Slab
| e e %
N e | LT !;\
Anchorage
— Abutment Bars N

(@)

(b)

(©)

Figure 2.9: Anchorage bar layout in approach slab-abutment connection
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2.3. Survey Results

Thiagarajan et.al. (2010) performed a comprehensive review of approach slab practices in US
states DOTs to develop approach slab design and detailing recommendations and perform cost
analysis. Table 2.2 summarizes the results of the survey, which include the slab span, depth, bottom
and top reinforcement in both longitudinal and transverse directions, cover, and flexural strength.
Based on these results, the ranges of different design parameters are as follows:

1. Slab span ranges from 10 ft. to 33 ft.

2. Slab depth ranges from 8 in. to 17 in.
Span-to-depth ratio ranges from 10 to 36
Bottom longitudinal reinforcement ranges from #5 @ 8 in. to #10 @ 6.5 in.
Main reinforcement ratio ranging from 0.3% to 1.4%
Bottom transverse reinforcement range from #4 @ 24 in. to #6 @ 6 in.
Top longitudinal reinforcement ranges from #4 @ 18 in. to #7 @ 12 in.
Top transverse reinforcement ranges from #4 @ 18 in. to #6 @ 12 in.
Concrete cover ranges from 1 in. to 4 in.
10 Flexural strength ranges from 16.5 kip.ft to 122.9 kip.ft.

© N> O AW

In order to present the results of the survey in a simple and clear manner, Figures 2.10, 2.11, 2.12,
and 2.13 are plotted to show the frequency distribution of the following four key design
parameters, respectively: span length, slab depth, span-to-depth ratio, and bottom longitudinal
reinforcement ratio. These figures also highlight in black-bordered box the range where NDOT
approach slab design parameters fall, which indicate that current NDOT approach slab design
parameters are not extreme, but rather match the most common ranges used by other states.
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Table 2.2 Results of Approach Slab Survey

Thiagarajan et.al., 2010

Span |Depth| s/D Bottom Long. Bottom Trans. Top Long. Top Trans. Cover| & Mn
State (ft) (in.) | Ratio |Bar# Sp?cmg Re|r!f. Bar # Sp?cmg Bar # Sp?cmg Bar # Sp?cmg (in.) | (ft-kip)
(in.) Ratio (in.) (in.) (in.)
Alabama 20 9 26.7 6 6 0.8% 4 15 4 4 4 12 3 19.7
Arizona 15 12 15.0 8 9 0.7% 5 12 5 12 5 12 3 36.6
Arkansas 20 9 26.7 5 6 0.6% 4 12 2 17.4
20 14.5 16.6 7 6 0.7% 5 12 4 18 4 18 2 60.4
California 30 14 25.7 8 6 0.9% 5 12 6 12 5 18 2 73.5
Colorado 20 12 20.0 9 6 1.4% 5 12 5 12 5 12 3 62.7
Connecticut 16 15 12.8 6 6 0.5% 5 12 5 12 5 12 3 43.5
Delaware 18 15 14.4 5 8 0.3% 5 12 5 12 5 12 3 23.7
30 15 24.0 5 8 0.3% 5 12 5 12 5 12 3 23.7
Florida 30 12 30.0 8 9 0.7% 5 9 5 12 5 12 4 31.9
Georgia 10 10 12.0 7 8 0.8% 5 19 5 12 5 12 1.5 30.0
30 10 36.0 7 8 0.8% 5 19 5 12 5 12 1.5 30.0
Idaho 20 12 20.0 8 9 0.7% 5 12 4 18 5 12 3 36.6
Illinois 30 15 24.0 9 5 1.3% 5 8 5 12 5 12 2 115.3
lowa 20 12 20.0 8 12 0.5% 5 12 6 12 5 12 2.5 29.9
Kansas 13 10 15.6 6 6 0.7% 5 18 5 12 5 12 2 27.6
Kentucky 25 17 17.6 8 6 0.8% 5 10 3 87.7
Louisiana 20 12 20.0 6 6 0.6% 4 12 5 12 5 12 3 31.6
Maine 15 8 23.1 6 6 0.9% 5 12 5 12 5 12 1 23.7
Massachusetts 20 10 24.0 7 5 1.2% 4 18 4 9 4 18 3 35.7
Minnesota 20 12 20.0 6 6 0.6% 5 12 5 12 5 12 3 31.6
Mississippi 20 9 26.7 7 12 0.6% 5 24 7 24 5 24 2 16.5
Missouri 25 12 25.0 8 5 1.3% 6 15 7 12 4 18 2 69.2
Missouri Mas 25 12 25.0 6 6 0.6% 4 12 5 12 4 18 2 35.6
Nebraska 20 14 17.1 | 8 6 0.9% 5 9 5 12 5 12 3 66.4
Nevada 24 12 24.0 7 6 0.8% 4 4 4 12 4 12 3 41.5
New Mexico 14 11 15.3 7 6 0.9% 5 9 4 9 4 9 3.5 33.4
New York 10 12 10.0 5 8 0.3% 5 12 5 8 5 12 3 17.5
North Carolina 25 12 25.0 6 6 0.6% 4 12 5 12 5 12 2 35.6
North Dakota 20 14 17.1 6 6 0.5% 6 6 5 12 5 12 3 39.5
15 12 15.0 10 10 1.1% 5 9 5 18 5 18 3 49.8
Ohio 20 13 18.5 10 7.5 1.3% 5 8 5 18 5 18 3 72.1
25 15 20.0 10 7 1.2% 5 8 5 18 5 18 3 95.8
30 17 21.2 | 10 6.5 1.1% 5 8.5 5 18 5 18 3 122.9
20 13 18.5 9 8 1.0% 4 12 4 12 4 12 2.5 59.6
Oklahoma 24 13 22.2 9 8 1.0% 4 12 4 12 4 12 2.5 59.6
29 13 26.8 9 8 1.0% 4 12 4 12 4 12 2.5 59.6
Oregon 20 12 20.0 7 6 0.8% 6 12 6 12 6 12 2 46.9
30 14 25.7 9 6 1.2% 6 12 6 12 6 12 2 89.7
Pennsylvania 25 16 18.8 10 9 0.9% 6 12 5 12 5 12 3 84.8
South Carolina 20 12 20.0 9 6 1.4% 5 12 5 12 5 12 3 62.7
South Dakota 20 9 26.7 6 6 0.8% 6 6 5 12 5 12 3 19.7
Tennessee 24 12 24.0 6 6 0.6% 4 18 5 12 5 12 2 35.6
Texas 20 13 18.5 8 6 1.0% 5 12 5 12 5 12 3 59.3
15 14 12.9 6 6 0.5% 5 12 3 39.5
Vermont 20 15 16.0 9 10 0.7% 5 12 3 57.0
25 16 18.8 9 9 0.7% 5 12 3 68.7
20 15 16.0 7 6 0.7% 5 9 5 12 5 18 3.5 55.0
Virginia 22 15 17.6 8 6 0.9% 5 9 5 12 5 18 3.5 70.0
25 15 20.0 8 6 0.9% 5 9 5 12 5 18 3.5 70.0
28 15 22.4 9 6 1.1% 5 9 6 12 5 18 3.5 85.2
Washington 25 13 23.1 8 5 1.2% 5 9 6 5 5 18 2 77.7
Wisconsin 16 12 16.0 6 6 0.6% 4 24 5 12 5 12 2 35.6
Wyoming 33 12 33.0 5 8 0.3% 5 12 5 12 5 12 3 17.5
MIN. 10 8 10 5 5 0.3% 4 4 4 4 4 9 1 16.5
MAX. 33 17 36 10 12 1.4% 6 24 7 24 6 24 4 122.9
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Chee, (2018) conducted a survey for state DOTs about the general design and construction
practices for integral abutment bridges and the performance of approach slabs in these bridges
compared to conventional bridges. The purpose of the survey was to identify the parameters that
might contribute to approach slab deterioration, in general, and cracking in particular. Twenty-
three states responded to the survey, most of them are Midwest states. Figure 2.14 shows the type
of problem that was identified by the states as a primary problem in approach slabs. This plot
indicates that approximately 50% of the states identified cracking as the primary problem, which
is second to settlement. Figure 2.15 plots the type/direction of the observed cracking. This plot
indicates that longitudinal cracks are the most dominant type of cracking in approach slabs.
According to the survey results, the following are the different method suggested by states to
minimize the cracking in approach slabs:

1. Increase reinforcement (most common)
Increase thickness
Limit skew angle to 45°
Design as simply supported slab
Adjust concrete mix and wet curing process
Saw cut along lane lines
Cast as individual sections
Restrict slab length

Nk WD

18
16
14
12
10

No. of States

o N B O ©

Cracking Settlement Bump Other
Primary Problem with Approach Slab

Figure 2.14: Distribution of approach slab primary problems
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Figure 2.15: Distribution of approach slab cracking directions

This survey also included questions regarding the material used underneath the approach slabs to
reduce soil friction and type of support used at the paving end. Figure 2.16 and Figure 2.17 show
the answers to these two questions respectively. Figure 2.23 indicates that about 43% of the
surveyed states use a certain method to reduce the friction with the soil, primarily polyethylene
sheeting. Figure 2.24 indicates that sleeper slab is the most common type of support for approach
slab at the paving end. More information about other details, such as connection at the abutment
end, can be found in the reference Chee, (2018)
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Figure 2.16: Distribution of the material used underneath approach slabs
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Chapter 3. Condition Evaluation

3.1 Field Observations

Three field visits were conducted on October 2, 2020 to visually inspect approach slabs and assess
the level of cracking. This is in addition to the data obtained from routine visual inspection of
bridges obtained from NDOT, which are presented in the next section. The three selected bridge
had different conditions with respect to approach slab detailing, skew angle, and traffic volume to
evaluate the effect of these conditions on the cracking pattern and intensity. Below are description
of each of the three bridges, map of approach slab and paving section cracking, and photos of their
cracking.

Ayr Bridge on Little Blue River

This is a three-span steel girder bridge in Ayr, Adams County, NE over Little Blue River. The
bridge was redecked in 2014 with a new approach slab and paving section. The bridge has 35
degree skew and roadway width of 30 ft, as shown in Figure 3.1, and an Average Daily Traffic
(ADT) of 440. The unique feature of this bridge is the connection of the paving section to the grade
beam, which had a 3 in. x 3 in. x 3 in. polysterene block around the #6 dowel bar as shown in
Figure 3.2. This was provided to reduce stress concentration at the connection and, consequently,
minmize cracking due to volume changes. However, the observed crackign shown in Figure 3.3
for the bridge deck, approach slab, and paving section indicates that there are several crackes that
are primarly longitudinal and perpendicular to the support lines. The intensity and extent of these
cracking is evident in the photos shown in Figure 3.4. This cracking could be attributed to the high
skew angle and restained skrinkage of the slabs in the transverse direction, which will be
analytically investigated in the next chapter.
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Figure 3.1: Plan view of Ayr Bridge
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Figure 3.2: Ayr bridge connection detail at the grade beam

Figure 3.3: Ayr bridge cracking map
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Figure 3.4: Ayr bridge approach slab and paving section cracking
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Little Sandy Creek Bridge on I-74 E

This is a three-span concrete girder bridge on I-74E over Little Sandy Creek in Adams County,
NE. The bridge has no skew and had only transverse cracks in the paving section as shown in
Figure 3.5. This could be attributed to the relative settlement between the grade beam end and
roadway end. The photos shown in Figure 3.6 indicate that no cracking was observed in the
approach slabs, which could be as result of having no skew in addition to low traffic volume.

Figure 3.5: Cracking map of approach slab and paving section of Little Sandy Creek bridge.

B FE————
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Figure 3.6: Little Sandy Creek bridge approach slab and paving section cracking
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Turkey Creek Bridge on US 81

This is a three-span prestressed concrete Tee girder bridge on US 81 over Turkey Creek in Furnas
County, NE. The bridge was built in 2001 and has 15 degrees skew and roadway width of 38.4 ft.
The bridge has an ADT of 6540 with 22% truck traffic. Figure 3.7 shows the cracking map of the
approach slab and paving section indicating minor longitudinal cracking in the approach slab and
signficant transverse cracking of the paving section, which could be attributed to the relative
settlement between the grade beam end and roadway end. Figure 3.8 shows photos of these cracks
as well as deterioration at the expansion joint.

Figure 3.7: Cracking map of approach slab and paving section of Turkey Creek bridge
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Other Bridges

Figure 3.9 shows the cracking patterns observed in several bridge approach slabs during the routine
visual inspections. Structure number and year of inspection are provided below each photo.

SS66C00220_Y15
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S275 06764L_Y15

S275 06761 Y11

S275_06761_Y11
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S080_42831R_Y12

S080_42831R_Y12
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S034 31644 Y15

S034 31644 Y15
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Figure 3.9: Photos of approach slab and paving section cracking at different bridges

39



3.2 Inspection Records

National Bridge Inspection Standards (NBIS) were established in the 1970s to collect condition
ratings and other functional and geometric data (National Bridge Inventory (NBI) data) for bridges
to calculate the Sufficiency Rating for funding prioritization. These NBI condition ratings are
determined for main bridge components (superstructure, substructure, deck and culverts) through
biannual visual inspections. Based on these inspections, the condition of approach slabs and their
deterioration cannot be determined. Since 2014, NDOT has been gathering Element Inspection
(El) data, which is detailed data that allows them to manage their bridge inventory more effectively
by (NDOT, 2018):

* Quantifying and describing element condition observed during inspection and the extent
of deterioration.

» Identifying candidates for preservation, maintenance, rehabilitation, improvement (i.e.
widening, raising, strengthening) and replacement practices/strategies.

* Predicting future deterioration of bridge elements for schedule purposes.

» Managing their budgets for bridge preservation.

Therefore, El data was gathered and analyzed to assess the deterioration of approach slabs and
determine the effect of governing parameters, such as age, skew angle, average daily traffic, and
percentage of truck traffic, on their deterioration. These data was obtained from NDOT bridge
office during the summer of 2020.

Figure 3.10 presents the bridge elements of the paving, approach, and main spans. Element number
321 represents Reinforced Concrete Paving Slab, which is defined as the reinforced concrete slabs
immediately adjacent to the bridge structure and connected to the roadway. When the approach
slab spans between the bridge abutment and a grade beam, this element also includes the paving
slab beyond the approach slab. Rating is conducted in square foot of the slab in each condition
state. Figure 3.11 shows the definitions of each condition state for each type of defects. Since
cracking is the major concern in concrete approach slabs, defect number 1130 is considered in this
study to determine the intensity and extent of cracking. The assessment should represent the worst
condition stated in each square foot, which includes only the top of the approach slab. If an overlay
is present, destructive or nondestructive testing or indicators in the overlay are used to assess the
condition of the approach slab that is not visible.
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Main 1 9304 - Fix Plate Bearing (x2) (Span 4)
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Approach 2 12 - R/C Deck (x2) (Span 3 & 5)
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Figure 3.10: Bridge paving, approach, and main spans aw well as their elements
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*Note: Photos approximate the boundary condition between Good/Fair, Fair/Poor and Poor/Severe.

Figure 3.11: Definitions of condition ratings for different element defects

Figures 3.12, 3.13, 3.14, and 3.15 show the frequency distribution of age, skew angle, roadway
clear width, and traffic volume (ADT and % truck), respectively, for NDOT approach slab
elements considered in this study, which were approximately 500 elements. These parameters were
determined based on the literature review and several studies contributed the cracking to one or
more of these parameters. Figures 3.16, 3.17, 3.18, 3.19, and 3.20 show the relationships between
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each of these governing parameters and the percentage of approach slab area that is cracked
including all those in the four condition states. These plots indicate that there is no strong
relationship between the % cracked area and any of these governing parameters. However, age
appears to be the parameter that has the highest direct correlation as more cracking is observed in

older approach slabs than newer ones.

140
120
100
80
60
40
20
0

Frequency

(5,100  (15,20]  (25,30]  (35,40] (45,501 (55, 60]
[0, 5] (10,15]  (20,25]  (30,35]  (40,45]  (50,55] (60, 65]

Age (years)

Figure 3.12: Frequency distribution of age of the considered NDOT approach slabs
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Figure 3.13: Frequency distribution of skew angle of the considered NDOT approach slabs
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Figure 3.14: Frequency distribution of roadway clean width of the considered NDOT approach slabs
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Chapter 4. Analytical Investigation

4.1 Introduction

In order to determine the causes of approach slab cracking, an analytical investigation was
conducted using finite element modeling (FEM) to simulate the behavior of a typical approach
slab currently used in Nebraska (20 ft span and 14 in. thick). The analysis was conducted to
evaluate the response of the approach slab to dead and live loads as well as volume changes due
to shrinkage and temperature. A parametric study was also conducted by changing the values of
the following parameters: skew angle, roadway width, type of longitudinal joints, abutment
connection and soil friction. The values of these parameters considered in the investigation are
shown in Figure 4.1. According to BOPP Manual (NDOT, 2016), the concrete used in this
investigation is a normal weight concrete (150 pcf) with a specified compressive strength (f”) of
4000 psi. Cracking strength (modulus of rupture) of 480 psi, modulus of elasticity (MOE) of 3987
ksi, and Poisson ratio of 0.2 were assumed according to AASHTO LRFD (2017).

Study Parameters

Skew Roadway Longitudinal Abutment Soil

Angle Width Joint Connector Friction
— 0 deg. 42 ft Partial Depth Rigid Considered
— 26.6 deg. 30 ft Full Depth Sleeved Frictionless
— 45 deg.

Figure 4.1: Parameters considered in the analytical investigation

The modeling of the approach slab was conducted using two modeling techniques for verification:
Solid65 element in Ansys V19 R1 as shown in Figure 4.2; and thick shell element in SAP2000
V21 as shown in Figure 4.3. The two techniques yielded similar results, therefore, the results of
only the shell elements for clarity are presented here in this chapter. The approach slab was meshed
to 1 ft x 1 ft thick shell elements that are either squares or parallelograms in the direction of the
support lines. All elements had thickness of 14 in. except the elements at the abutment support line
has thickness of 18 in. and the elements at the grade beam support line had a thickness of 16 in.
The joints between approach slab and abutment were simulated as hinged supports every 1 ft to
restrain movement, while the connections between the approach slab and grade beam were
simulated as roller supports as there is no restriction on approach slab horizontal movement. The
rail was modeled as frame elements at ends of the approach slab as shown in the extruded view of
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the approach slab model in Figure 4.4. The dead load applied to the approach slab includes the
own weight of the slab (100 psf) and rail (0.45 klIf assuming 34 in. closed rail). Wearing surface
of 25 psf and live load of the HL93, which includes lane load of 64 psf and axle loads of the design
truck or design tandem shown in Figure 4.5, were applied. Two lanes were loaded and the axle
loads of the tandem plus 33% impact, which controlled the design, where located following the
AASHTO LRFD (2017) specifications. For volume change effects, + 45° F was applied to simulate
the strains due to shrinkage and temperature assuming a coefficient of thermal expansion used of
6.0x10 in./in./°F. Shrinkage calculations, shown in Appendix B, indicates that drying shrinkage
strain of approach slab concrete is almost the same as that of temperature reduction of 45°F.

Tetrahedral Option
(not recommended)

Figure 4.2: Solid Element geometry

Axis3 h

Faca G: Top (#3 face)

Faca &: Bottom (-3 faca)

Figure 4.3: Shell Element geometry
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Figure 4.4: Extruded view of the approach slab model
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Figure 4.5: Design live load configurations
4.2 Effect of Skew Angle

Three bridge approach slabs with three different skew angles were investigated as shown in Figure
4.6. The bottom longitudinal service stresses were plotted for each slab as shown in Figure 4.7,
which indicates that the stresses decrease as the skew angle increases. This is in agreement with
the AASHTO LRFD (2017) equation 4.6.2.3-3 that calculates a reduction factor for longitudinal
force effects in skewed bridges as a function of the skew angle, which is shown in Figure 4.8. To
confirm this behavior, Figure 4.9 plots the deflection of the slab under dead and live loads for the
three cases, which confirms that deflection decreases as skew angle increases. This is primarily
due to the fact that higher skew angle creates a shorter load path as the perpendicular distance
between support lines decreases. However, this also results in a change in the direction of principal
stresses as shown in Figure 4.10. Therefore, it is recommended that the direction of longitudinal
reinforcement follows the direction of principal tensile stresses for approach slabs with high skew
angles as shown in Figure 4.11, which is in agreement with AASHTO LRFD (2017) 9.7.1.3.
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Figure 4.12 shows the orientation of transverse and longitudinal reinforcement in approach slabs
with no skew, skew angles less than 30 deg., and skew angles equal to or greater than 30 deg.
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Figure 4.6: Models of approach slabs with different skew angles
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Figure 4.7: Slab bottom longitudinal stresses (ksi) due to dead and live loads
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Figure 4.8: Longitudinal force effect reduction factor at different skew angles
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Figure 4.10: Direction of principal bottom stresses (ksi) in skewed approach slab
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Figure 4.12: Proposed orientation of longitudinal reinforcement in approach slabs with no, low and high
skew angles

The top principal service stresses due to volume changes (i.e. shrinkage and temperature) are
shown in Figure 4.13 for each of the approach slabs. This figure indicates that the stresses increase
as the skew angle increases. It also shows that the highest stresses are those close to the abutment
support line especially at the corners due to the restraining effects of the dowel connectors and the
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stresses decrease away from it. Figure 4.14 clarifies that by plotting the principal stresses as arrows,
which confirms the direction of the longitudinal cracks reported in chapter 3.

Figure 4.13: Slab top principal stresses (ksi) due to volume changes

Figure 4.14: Directions of slab top principal stresses (ksi) due to volume changes

4.3 Effect of Roadway Width

The effect of roadway width on approach slab performance was studied on the case with highest
skew angle as it was believed it is the most critical case. A 30 ft. (2 lanes) and 42 ft (3 lanes) wide
approach slabs, shown in Figure 4.15, were analyzed to obtain the maximum stresses at the bottom
and top fibers. Figure 4.16 shows the principal bottom stresses due to dead and live loads, while

54



Figure 4.17 shows the principal top stresses due to volume changes. Both figures indicate that
there is not significant difference in approach slab stresses due to changes in the roadway width.
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Figure 4.15: Models of approach slabs with different roadway width
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Figure 4.16:

Slab bottom longitudinal stresses (ksi) due to dead and live loads
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Figure 4.17: Slab top principal stresses (ksi) due to volume changes
4.4 Effect of Longitudinal Joint Type

According to NDOT BOPP (2016) section 2.2.4 on approach slab policy, the approach and paving
sections of bridge approaches should have a longitudinal joint placed at the centerline of the
roadway or phase line if not phased about the centerline. On approaches where half the clear
roadway exceeds 21 ft., additional longitudinal joints shall be placed at the edges of the 12’ traffic
lanes. The minimum spacing from the last joint to outside edge of approach should not be less than
10 ft. Figure 4.18 shows the details of a typical longitudinal joint, which is a partial-depth joint.

'\.-‘!.'IIEII —_— .'||'i.llalll I".--\.-.:.'l.l:-ll-lll"

LONGITUDINAL JOINT

Figure 4.18: Typical longitudinal joint in approach slab

Another option is the full-depth longitudinal joint, which is similar to NDOT construction joint
shown in Figure 4.19. Also, lowa DOT has a full-depth longitudinal joint (KS-2) proposed for
bridge approaches as shown in Figure 4.20 (King, 2020). The main difference between the two
joints is the use of 30 in. long #5 every 12 in. along the joint to act as a dowel across the shear key.
The effect of longitudinal joint type on approach slab performance was studied in the case with no
skew angle. Two slabs were analyzed: one without longitudinal joint and the other with full-depth
longitudinal joint at the middle as shown in Figure 4.21. Figure 4.22 shows the top stresses in the
two slabs due to shrinkage/temperature effects. The figure indicates that the full-depth longitudinal
joint is more effective in reducing transverse stresses than the partial-depth longitudinal joint.
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Figure 4.22: Slab top principal stresses (ksi) due to volume changes
4.5 Effect of Abutment Connector Type

In integral abutment systems, the approach slabs are rigidly connected to the backwall so they are
allowed to move with the superstructure and abutments. Expansion joints are provided at the grade
beam ends of the approach slabs. Figure 4.23 shows the #6 connectors every 12 in. at the abutment
end to be embedded into the approach slab. It is believed that these dowels restrain the movement
of the approach slab due to volume changes resulting in the common longitudinal cracks.

e~ \ e

Figure 4.23: Current practice of using #6 @12 in. dowels to connect approach slab at the abutment
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Therefore, it is proposed to use sleeved connectors that partially allow horizontal movement of
approach slabs due to volume changes, which reduces the stress concentration at the connector
location. Figure 3.2 in the previous chapter showed an example of using 3 in. polystyrene blocks
on the paving section connectors. Figure 4.24 shows a similar method but using 2 in. diameter and
4 in. long cylindrical sleeves to be placed around connectors. These sleeved connectors will act as
springs rather than hinged supports with horizontal stiffness that depends on the connector
diameter and the sleeved length. The calculated stiffness of the spring that corresponds to #6
connector with 4 in. sleeve was found to be 84 kip/in. as shown in Appendix B. Figure 4.25 shows
the models of the approach slabs using springs that represents two cases: #6 bars at 12 in. spacing
and #7 bars at 24 in. spacing. Figure 4.26 shows that using sleeved connectors does not have any
effect on the stresses due to gravity loads (dead and live), while Figure 4.27 shows that they
resulted in a significant reduction in the stresses due to volume changes (shrinkage and
temperature effects). Figure 4.27 also shows there is no significant difference between using
#6@12 in. and #7@24 in. sleeved connectors, which suggests that using #7 @24 in. could be more
cost effective.

Figure 4.24: Methods of providing sleeved connectors
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Figure 4.25: Models of approach slabs with sleeved connectors
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Figure 4.27: Slab top principal stresses (ksi) due to volume changes using: a) #6@12”; and b) #7@24”
sleeved connectors
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4.6 Effect of Soil Friction

In all the previous models, it was assumed that there is no friction between the approach slab and
the backfill underneath it, which does not affect the results due to gravity loads. However, this
could have effect on the slab stresses due to shrinkage and temperature and abutment movement.
In order to evaluate the effect of soil friction on the stresses in the approach slab, horizontal springs
were added to all the nodes to simulate the resistance to horizontal movement due to soil friction.
A friction coefficient of 0.6 and modulus of subgrade reaction of 247 pci is assumed for a fair soil
quality based on the calculations shown in Appendix B. Figure 4.28 shows the top principal
stresses in the approach slab due to volume changes when soil friction is considered. Comparing
these stresses with those shown in Figure 4.27 (without friction) indicates that soil friction
increases the stresses slightly, which could increase approach slab cracking. Figure 4.29 shows the
top principal stresses in the approach slab due to 1 in. abutment movement when soil friction is
considered. This figure also indicates that there are additional stresses due to abutment movement.
Therefore, it is recommended to add frictionless sheets underneath the approach slab to
minimize/eliminate these effects.
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Figure 4.29: Slab top principal stresses (ksi) due to abutment movement with considering soil friction
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Also, in all the previous models, the effect of backfill in supporting the approach slab was neglected.
Although this is more conservative for the case of dead and live loads, it is not conservative for the case of
differential settlement. Therefore, vertical springs with stiffness equal to 35.5 kip/in (calculated as shown
in Appendix B) were added to every node to simulate the effect of subgrade reaction when differential
settlement of 1 in. between the grade beam and abutment occurs. Figure 4.30 shows very high principal
stresses at the top of the approach slab due to differential settlement when full soil support exists, which
will result in transverse cracking. These stresses do not exist if the approach slab is assumed as simply
supported at the ends with no subgrade reaction. Partial soil support, which is more realistic, will result in
lower stresses that could lead to transverse cracking similar to that shown in Figure 3.8. This analysis
emphasizes the importance of having pile-supported grade beams and abutments, which reduce the
differential settlement between the ends of the approach slabs.

1T

R

Figure 4.30: Slab top principal stresses (ksi) due to differential settlement

4.7 Proposed Changes

Based on the results of the analytical investigation presented in this chapter, the following changes
to the CIP concrete approach slab design and detailing are proposed to improve its performance
and minimize the longitudinal cracking commonly observed in the current design (Figure 4.31):

1. Use two 4 mil or one 6 mil polyethylene sheets underneath the approach slab to minimize
soil friction.

2. Use 2 in. diameter and 4 in. long polystyrene around connectors between the approach slab
and backwall. These connectors can be #7 at 24 in. instead of #6 at 12 in. to reduce cost.

3. Use one full-depth longitudinal contraction/construction joint at the middle of the approach
slab to reduce cracking. Additional longitudinal joints remain partial-depth joints.

4. Increase the number of top transverse reinforcement to be #5 at 6 in. in the 10 ft close to
the abutment end to better control cracking. The remaining 10 ft will have #5 at 12 in.

5. For highly skewed slabs, place longitudinal reinforcement perpendicular to support lines.
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Chapter 5. Precast Concrete Approach Slabs

5.1 Introduction

Construction of CIP concrete approach slabs faces several challenges, such as unexpected delays
due to weather conditions, inconsistencies due to uncontrolled environment and lack of skilled
labor, and long duration of forming, casting, and curing concrete. These challenges could affect
the speed and quality of construction as well as long-term performance of CIP concrete approach
slabs. In addition, the analysis conducted earlier indicated that volume changes of restrained CIP
concrete approach slabs due to shrinkage and temperature effects are major contributors to their
premature cracking. Precast concrete (PC) approach slabs minimize, if not eliminate, most of these
challenges as they are fabricated in a controlled environment, independent from weather conditions
and under tighter quality control procedure that results in higher product quality. Moreover, PC
approach slab panels are small in size and erected and connected when most of the shrinkage
already took place before being restrained, which minimizes shrinkage cracking. Therefore,
several organizations, such as Precast/Prestressed Concrete Institute (PCI) and state DOTSs,
developed PC approach slab systems, some of which were implemented in demonstration projects
recently to evaluate their constructability, performance, and economics. The next section presents
examples of these systems. Appendix C shows photos of the production and construction of these
systems .

5.2 Current Practices

PC approach slab systems can be classified as shown in Figure 5.1. Full-width panels are the least
common as they require using longitudinal post-tensioning to connect the panels in the traffic
direction, which increases construction cost and duration. Also, full-width panels need to have a
variable thickness in order to have a crown in the middle as shown in Figure 5.2 (Merritt et.al.,
2007). Partial-width panels can be produced with constant thickness as there will be a longitudinal
joint at the location of the crown, which simplifies fabrication. Partial-width panels can be full-
length panels, as shown in Figure 5.3 or partial-length panels, as shown in Figure 5.4. Full-length
panels have the advantage of being either prestressed or non-prestressed, while partial-length
panels require longitudinal post-tensioning in addition to transverse post-tensioning in most cases.
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Figure 5.1: Classification of Precast Concrete Approach Slabs
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Figure 5.2: Full-Width Precast Concrete Approach Slabs (Merritt et.al., 2007)
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Figure 5.4: Partial-Width Partial-Length Precast Concrete Approach Slabs (Merritt et.al., 2007)

= Partial-Width
Precast Panels

In 2012, PCI published guidelines presenting suggested design and detailing of precast concrete
approach slabs. Two typical designs are presented for the following two cases: surface approach
slab and sub-surface approach slab, as shown in Figure 5.5. Also, the guidelines contain different
configurations for longitudinal joints as shown in Figure 5.6, and connections at the abutment and
sleep slab as shown in Figure 5.7. Below are some of the design guidelines recommended by PCI:

e Maximum panel width is 12 ft. including any projecting reinforcement

e Maximum panel weight is 100 kips
e Minimum concrete compressive strength 5,000 psi
e Use shrinkage compensating admixture for site-cast concrete

e Flowable grout of the same concrete strength is used to fill small voids or gaps
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Merritt et.al. (2007) reported the replacement of the approach slab of a bridge on Highway 60 near
Sheldon, IA by eight 12 in. thick precast concrete panels as shown in Figure 5.8. Six panels were
rectangular with dimensions of 20 ft. x 14 ft. each and two panels were skewed. The precast slabs
were post-tensioned in both directions using 0.6 in. diameter Grade 270 7-wire stands at 24 in.
spacing and a flowable grout was used to fill the ducts. Each precast panel had #8 at 12 in. and #6
at 24 in. as bottom and top longitudinal reinforcement, respectively. Each panel had #5 at 12 in.
for top and bottom transverse reinforcement. A key-shaped transverse joint was used to connect
the panels using epoxy after aligning the longitudinal post-tension ducks as shown in Figure 5.9.
A grout filled longitudinal joint was used as shown in Figure 5.10. The skewed panels were
connected to the abutment using #8 stainless steel anchorage bars in grouted sleeves in precast
panels as shown in Figure 5.11. Figure 5.12 shows the connection of the end precast panels with
the paving section using a shear key and tie bar. The under-slab was filled by pumped grout to
ensure adequate support. Construction challenges were aligning panels with skewed bridge floor,
aligning post-tensioning ducts, and grouting operations. Photos of panel installation and
encountered challenges are shown in Appendix C
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Figure 5.8: Plan view of precast post-tensioned approach slab panels (Merritt et.al, 2007)

I x al-e
RECESS
TRUMPETED OPENINGS
POST-
o e ey ot g TRUMPETED OPENINGS
o AT POST-TENSIONING
B DUCTS ONLY
1* POST-TENSION nw e
DUCT o a I POST-TENSION
puCT
14" MIN,
CHANFER 14 MIN.
CHAMFER

Figure 5.9: Transverse joint detail (Merritt et.al, 2007)
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Figure 5.10: Longitudinal joint detail (Merritt et.al, 2007)

PRECAST APPROACH SLAB

NON-SHRINK GROUT

" / 2" DIA. ANCHOR SLEEVE (CAST INTO PANEL)

T
o

|
\ POLYETHYLENE i

SHEETING

#8 STAINLESS STEEL
ANCHOR BAR

172"

NEOPRENE PAD
———
\ BRIDGE DECK
\
\
\
\
\
\
\
\
\
L _ AN
LXD90 GIRDER
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Ziehl et.al. (2015) reported on the use of four 12 in. thick precast concrete panels to replace the
approach slab of a bridge over Big Brown Creek on River Road (S-86) in Union County, South
Carolina. The bridge was 37.25 ft. wide and had a skew angle of 38°. The four panels shown in
Figure 5.13 were installed and monitored for long-term performance. For installation, the backfill
was replaced by #789 stone and cover by a 6 in. thick roller compacted macadam as a sub-base
material and polyethylene moisture barrier. Then, panels were installed starting from exterior panel
by fitting the anchorage dowels of the deck ledger into the panel formed sleeves, shown in Figure
5.14, and filling the sleeves with grout. The longitudinal joints between panels had 2#6
longitudinal bars inside the overlapped #5-U shaped bars, as shown in Figure 5.15, and were filled
with field-cast concrete. Precast panels were overlaid by 2.5 in asphalt layer for protection.
However, separation cracks were noticed later at the joint between approach slab and pavement as
shown in Appendix C.
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Figure 5.13: Plan view of precast concrete approach slab panels (Ziehl et.al., 2015)
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Gudimetla, 2012 proposed s design of precast concrete approach slab that is alternative to Missouri
DOT standard design of CIP concrete approach slabs. The precast concrete slab is 12 in. thick, 25
ft long, and 38 ft wide as shown in Figure 5.16. The slab consists of several adjacent panels that
are 4 ft — 6 ft wide and longitudinally prestressed using 0.5 in. diameter Grade 270 strands at 4 in.
spacing as shown in Figure 5.17. The panels are connected transversely using Hollow Structural
Section (HSS) and #4 rebars at 12 in. spacing, which will be field grouted after installation. Figure
5.18 shows a longitudinal section of the proposed approach slab with the connection to the
abutment and sleeper slab. Another alternative is also proposed that is similar to this one but using
10 in. thick precast slab and 2 in. CIP concrete topping.
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Figure 5.16: Plan view of precast approach slab panels (Gudimetla, 2012)
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Figure 5.18: Longitudinal section of the approach slab (Gudimetla, 2012)
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Illinois DOT published guidelines for precast concrete approach slabs for the following cases: no
skew, less than 30 deg. skew (right and left), and greater than 30 deg. (right and left). Figure 5.19
shows the plan and section views for no skew case illustrating the connections at the abutment and
at approach slab footing (i.e. sleeper slab). Figure 5.20 shows that the precast approach slab
consists of several adjacent panels that are approximately 2 — 3 ft wide. Details of the longitudinal

joint between panels and panel reinforcement are shown in Figures 5.21 and 5.22 respectively.
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Figure 5.19:Plan and section views of apprdach slab with no skew (IDOT, 2017)
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Figure 5.21:Longitudinal Joint detail A (IDOT, 2017)
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Figure 5.22:Reinforcement of precast concrete approach slab panel (IDOT, 2017)

S(E) 58 #5

NDOT had successfully implemented precast concrete approach slabs in two recent projects. The
first project was the replacement of the Belden-Laurel bridge on U.S. 20 over Middle Logan Creek
in Cedar County, NE in 2018. The project was the first bridge in Nebraska constructed entirely
using prefabricated components, including approach slabs, for accelerated bridge construction
(Morcous and Tawadrous, 2021). Four full-length full-depth precast concrete panels were used to
construct each of the two approach slabs of the bridge that is 42 ft. 8 in. wide with 10 degrees skew
as shown in Figure 5.23. Another four panels were used to construct the paving section at each
end. Longitudinal joints between panels were filled with 4 ksi High Early Strength Concrete
(HESC) as shown in Figure 5.24. The end transverse joints between the panels and bridge deck,
shown in Figure 5.25, were filled with Ultra-High Performance Concrete (UHPC). The paving
section panels, shown in Figure 5.26, are connected to the grade beam using 1 in. diameter dowels
that are embedded into 6 in. formed sleeves and filled with HESC. Flowable fill was pump
underneath the paving section panels to fill the gaps between the panels and backfill. Appendix C
shows construction photos as well as photos of inspection conducted on 04/09/2021 indicating
transverse cracking of the asphalt overlay at the end of paving section and end of floor.
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Figure 5.26:Cross section of precast concrete panels of the paving section and their connection to the
grade beam (Belden-Laurel Bridge)

The second NDOT project was the repair/replacement of 1-680/ West Center Road Bridge.
Approach slabs were repaired but paving section slabs were replaced using full-length precast
concrete panels in two stages, each stage replaced half of the slabs using three panels and precast
concrete rail. Panels were prefabricated by the contractor at off site location and transported then
placed during overnight road closure. Figure 5.27 shows the plan view and cross section of an
interior panel. Reinforced longitudinal joints were filled with HESC and #6 vertical dowels bars
were used to connect the panels to the abutment using 3 in. diameter dowel holes as shown in
Figure 5.28. Figure 5.29 shows the dimensions and reinforcement of the longitudinal joints
between precast concrete panels, which were also filled with HESC. Then, a flowable fill was
pump underneath the paving section panels to ensure full support and, finally, membrane and
asphalt layer were placed to provide the riding surface. Construction photos are shown in Appendix
C.
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Figure 5.27:Plan and section views of an interior precast concrete panel of the paving section and its
connection to the grade beam (1-680/West Center Road Bridge)
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Table 5.1 summarizes the dimensions and reinforcement of the precast prestressed (PC) and
reinforcement (RC) concrete approach slabs presented earlier for ease of comparison. This table
indicates that most common panel thickness is 12 in. with 4 or 5 ksi compressive strength concrete.
Panels are commonly connected with HESC-filled longitudinal joints that are reinforced with #5
U-bars and either horizontal or vertical dowels to connect to the abutment. Panels can be as narrow
as 4 ft and as wide as 14 ft. Top and bottom reinforcement can vary significantly in both
longitudinal and transverse directions.

Table 5.1: Summary of Precast Concrete Approach Slabs

. Length | Width | No. of | Thicknes | Skew | f' Bottom Top Longitudinal Connection
DOT Project Type i . . i
(ft) (ft) |Panels| s(in.) |(deg.)|(ksi) | Reinforcement | Reinforcement Joints to Abutment
lowa, 2007 ngh\:'va\,r 60 pC 50 14 g 12 20 5 #6@2. Long. #6@2. Long. |Post-Tensioned| #8@24" Vt.
Bridge #5@2' Trans. #5@2' Trans. + Grout Dowel
Missouri, Proposal pC )5 4 8 12 N/A 5 12-0.5" Long. #4@9"Long. B4@12", HSS, | #5@12" Hz.
2012 Strands #3@12" Trans. Grout Dowel
S. Carolina,| BigB #I@6" L . #7@12" L . |#5@12"U, 246, | HO@12" Vt.
arolina ig roTNn RC 50 1 4 12 38 3 @ ) ong @ g ong @ : @
2015 Creek Bridge #6@12" Trans. #6@12" Trans. 4 ksi HESC Dowel
lllinoi 16 #O@5"L . #5@12" L . Unreinf d [2#8VtD |
inois, Standards | RC 30 267 | N/A NA | 6 @ > ong @ ? ong nreinforce owels
2017 (11+5) #5@6" Trans. #5@6" Trans. concrete per Panel
Nebraska, BelderT— RC 0 10 4 14 10 4 #8@5 '!_ong. #5@12 '!_ong. #5@12. U, 2#5,| #5@12" Hz.
2018 Laurel Bridge #5@7.75" Trans. |#5@11.75" Trans.| 4 ksi HESC | Dowel + UHPC
Nebraska, | 1-680 & W. #6@6" L . #5@12" L . |#5@12"U, 245,| HE@12" Vt.
ebraska Rc| 30 |733] 6 14 |725] 4 @6" Long @12" Long. | #5@12 @
2019 Center Rd. #5@12" Trans. #5@12" Trans. 4 ksi HESC Dowel

Other state DOTSs, such as New York State DOT (NYSDOT), provide guidelines for materials,
element fabrication, and construction sequence. Examples of the guidelines for precast concrete
approach slabs in NYSDOT Prestressed Concrete Construction Manual (PCCM) are:

Use Epoxy Coated Bar Reinforcement or Stainless Steel rebars.

Concrete Compressive Strength fc” > 5000 psi at 28 days, and fci’> 3000 psi at lifting.

Maximum tensile stress in concrete due to handling and erection loads shall not exceed
0.15./f;;

Fabrication tolerances are

o

O

o

©)

Overall Depth

Reinforcement cover

Horizontal alignment

Panel Width and Length + 1/8”

+1/8”
+3/16”
1/4” for L <40 ft., 3/8” for L <60 ft., 1/2” for L > 60 ft.

Equipment weighing more than 2500 pounds shall not be permitted on the precast panels

between the initial set of the longitudinal closure pour and the time that test cylinders

demonstrate the closure pour concrete has reached a minimum strength of 10 ksi.

Surfaces shall be finished to a surface tolerance of % in. in 10 ft.
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5.3 Proposed Alternatives

Based on the discussion presented earlier on the different precast concrete approach slab systems and their
pros and cons, it was decided that the partial-width full-length non-prestressed concrete approach slab
system is the most appropriate system for NDOT due to its simplicity, speed of construction and economy.
However, some suggested changes are proposed to develop alternatives to this system, as shown in Figure
5.30, that could enhance its constructability and extend its service life. For example, using UHPC instead
of HESC in both longitudinal and transverse joints, as shown in Figures 5.31 and 5.32 respectively,
simplifies the reinforcement details at these joints and improves their resistance to ingress of water and
chemicals. Also, replacing ASTM A615 Grade 60 epoxy-coated steel reinforcement with ASTM A1035
Grade 100 ChromX 4100 reinforcement, as shown in Figure 5.33, will allow decreasing panel thickness to
12 in. instead of 14 in., reducing amount of reinforcement needed, and increasing corrosion resistance
without significant increase in cost. This is primarily due to the advantage ASTM A1035 has over ASTM
AB15 in stress-strain behavior as shown in Figure 5.34. Detailed calculations of these changes are resented
in Appendix B. Figure 5.35 shows two section views with reinforcement details for the four alternatives
presented in Figure 5.30. Figure 5.36 shows the direction of transverse reinforcement and longitudinal
reinforcement as well as location of lifting points for an example 12 ft x 20 ft panel with and without skew.
Although it is recommended to place the longitudinal reinforcement perpendicular to the support lines when
skew angle (0) is greater than 30 degrees, this could be impractical due to the small size of the panel.
Therefore, it is recommended to maintain the direction of longitudinal reinforcement parallel to traffic with
multiplying the amount of reinforcement by a magnification factor (1/cos(8)) to compensate for the
deviation from the principal stresses’ direction.

Non-Prestressed Precast
Concrete Approach Slabs

UHPC HESC
Joints/Connections | |Joints/Connections
Epoxy Coated Epoxy Coated
— Reinforcement — Reinforcement
14 in. thick 14 in. thick
ChromX 4100 ChromX 4100
' Reinforcement 1 Reinforcement
12 in. thick 12 in. thick

Figure 5.30:Proposed alternatives of non-prestressed precast concrete approach slabs
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Figure 5.31:Alternatives of longitudinal joints
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Figure 5.32:Alternatives of panel end connection
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Figure 5.33:Comparing design of precast concrete approach slab using Grade 60 A615 and Grade 100
A1035 reinforcing steel
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Figure 5.34:Comparison of typical stress-strain curves for ASTM A615 and ASTM A1035 reinforcement
bars (ACI 439-19)
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Chapter 6. Conclusions and Lessons Learned

6.1. Conclusions

This report presents a literature review on the current practices of approach slab in Nebraska and
the other DOTs. The causes of approach slab deterioration and its possible solutions were
discussed. Also, a parametric study was conduction by finite element modelling. The following
conclusions were drawn from this study:

1.

The current practices for design and detailing of CIP concrete approach slabs in US
differ significantly among state DOTs with respect to slab length, slab thickness,
concrete cover, joints/connection, and top and bottom longitudinal and transverse
reinforcement.

Concrete cracking and differential settlement are the top two problems with approach
slabs. Using grade beam on piles, which is the current practice of NDOT, minimizes
the settlement problem, however, cracking in the longitudinal direction in particular is
still a common problem.

NDOT current CIP concrete approach slab design and detailing is sufficient for dead
and live load effects. However, volume changes due to shrinkage and temperature
generate high transverse tensile stresses at the abutment end due to the lateral restraints.
These stresses could result in top longitudinal cracking perpendicular to the abutment
support line.

Reducing the stiffness of the approach slab connectors to the abutment backwall,
providing polyethylene sheeting under the approach slab, and using full-depth
longitudinal joints in wide approach slabs are efficient methods for reducing the lateral
restraints and, consequently, the transverse stresses leading to longitudinal cracking. In
addition, reducing the spacing between top transverse reinforcement close to the
abutment is also recommended to control the longitudinal cracking at the top surface
and enhance approach slab durability.

In highly skewed approach slabs (skew angle greater than 30 deg.), the direction of
bottom principal tensile stresses is perpendicular to the support lines. Therefore, it is
recommended to change the orientation of bottom longitudinal reinforcement in this
case to match the direction of principal tensile stresses for better utilization of the
provided reinforcement.

For precast concrete approach slabs, the use of field-cast UHPC can simplify the panel-
to-panel longitudinal joint and panel-to-backwall connection due to the significantly
reduced development length of the bars used.

Replacing the ASTM A615 Grade 60 epoxy-coated steel reinforcement with ASTM 1035
Grade 100 ChromX 4100 reinforcement allows decreasing panel thickness to 12 in. instead of
14 in. and reducing amount of reinforcement needed, which enhances the cost effectiveness of
the precast system. This is primarily due to the higher corrosion resistance and strength of
Grade 100 ASTM A1035 over Grade 60 ASTM A615.
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6.2. Lessons Learned

Several lessons were learned from the two NDOT projects that were constructed using precast
concrete approach slabs/paving sections. These lessons reflect the experience of
precasters/contractors during the fabrication and erection of the precast panels in the Belden-
Laurel Bridge and 1-680 and W. Center Road Bridge. Below is a summary of these lessons:

a)

b)

f)

9)

h)

)

Precast reinforced concrete approach slabs are simple to produce and install, however,
bar tying requirements could be relaxed in precast construction from those in CIP
construction due to the controlled environment and tight production tolerances.
Approach slab panel joints/connections could be simplified when UHPC is used to
benefit from the high strength and bond properties of UHPC in addition to its durability.
Lifting inserts for panel handling should be located at the center of gravity of the panel
including the rail if precast concrete rail is used. This could be significantly different
in small panels.

Sand blasting the joints after producing several panels could be more efficient than
using retarders to expose aggregates at the edges of each panel. It does not take long
time to cover the projecting bars and do sand blasting of all joints.

Pumping flowable fill underneath the paving sections is very challenging especially in
slopped surfaces. It works better in flatter surfaces.

Flowable fill can get easily trapped at some locations making it difficult to pump. It
also can seep around joints making it difficult to fill the joints with concrete and push
the flowable fill away.

Other alternatives to pumping flowable fill are compacting the base properly or using
leveling bolts to create enough gap for easier flow of pumped fill.

Leaving PVC tubes in the dowel holes makes it difficult to remove later. The PVC
tubes should be removed early on to ensure adequate bond with the fill concrete/grout.
Using dry mix to fill dowel holes is challenging. Using grout or flowable mix is more
efficient.

Threading two #5 bars inside the overlapped U-shaped loop bars of the longitudinal
joints between adjacent panel is challenging. This could be simplified by having one
#5 bar inside each loop bar prior to installing the panel.
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APPENDIX A: Proposed Specifications

2.2.4 — Approach Slab Policy
General Design

Approach slabs will be required on all State projects. Plans and elevation views of approach
sections should be shown on the General Plan and Elevation Sheet of Bridge Plans.

For bridges that are to be widened, the existing bridge and location should be investigated to
determine any deviations from the standard approach layout.

Design Criteria
Approach Section

The approach section length shall be 20 ft. from the end of the bridge floor to CL grade beam; see
Grade Beam Policy for more information. The thickness of cast-in-place concrete approach
section shall be 14 in. and can be reduced to 12 in. for precast construction if higher steel grades
are used. The approach section reinforcing details shall be as shown in Section 6 (6.12 thru 6.14),
Approach Slab Base Sheets. Approach slabs are placed above the abutment wing; see Wing Policy
for more information.

Paving Section

The paving section length shall be 30 ft. from CL grade beam to the road pavement along CL clear
roadway. The joint between the paving section and the roadway shall be perpendicular to CL
roadway. For wide bridges and/or large skew angles, Designers shall consult with the Assistant
Bridge Engineer on a case-by-case basis.

The thickness of cast-in-place concrete paving section shall be 14 in. and can be reduced to 12 in.
for precast construction. The reinforcing details shall be as shown in Section 6 (6.12 thru 6.14),
Approach Slab Base Sheets.

If abutment wings extend beyond the grade beam, changing paving section layouts is not
recommended. Designers shall show elevations of the end of pavement sections at left edge, center
and right edge.

Reinforcement Layout

For slabs with skew angle less than 30 degrees, longitudinal bar spacing is measured perpendicular
to CL roadway and placement is parallel to the CL roadway. For slabs with skew angle greater
than or equal to 30 degrees, longitudinal bars spacing is measured parallel to the skewed support
lines and placement is perpendicular to the skewed support lines as shown below. Designers should
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check longitudinal bar lengths to verify if the skew dictates a shorter bar. Field personnel indicated
that omission of these slight skew adjustments have caused problems for joint installation.
Transverse bar spacing is always measured parallel to CL roadway and placement is always
parallel to skewed support lines as shown below.

Roadway Centerline

Transverse Reinforcement |

6<30°

Longitudinal Reinforcement Longitudinal Reinforcement

20'

Reinforcement Layout in Approach Slabs

Polyethylene sheeting under concrete approach slab

Provide 2 layers 4 mil Polyethylene sheeting CLASS A under the approach slab as shown on the
plans. Polyethylene sheeting shall conform and be tested to a standard ASTM E1745, which is the
standard for vapor retarders in contact with soil or granular fill used under concrete slabs. These
materials should be engineered not to decay in this type of application. Soil or granular fill shall
be compacted and leveled as required prior to placing the polyethylene sheeting. Polyethylene
sheeting is used to reduce the friction forces between the approach slab and subbase. The top
surface of the grade beams shall be troweled smooth and polyethylene sheeting is laid over as a
bond breaker between the approach slabs and grade beams.

Approach Slab Connection at the Abutment End

For cast-in-place concrete approach slabs, provide 2 in. diameter and 4 in. long polystyrene sleeve on #7
dowels at 24 in. spacing connecting the approach slab to the backwall as shown below.
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Va N
3fHT — h .
@24 N
. o \
Two 4 mil . \} -2
|
Polyethylene | N

sheeting

2"@ x 4" Polystyrene\

CIP Approach Slab Connection at Abutment

For precast concrete approach slabs, two options are available for connecting the panels to the

deck/backwall using ultra-high performance concrete (UHPC) and high-early strength concrete
(HESC) as shown below.

L
UHPC 6" 7

TN
o a ~duo I
05 ]
f ) #5@12"
| 1§ —ph .
Backwall — Joint Filler

3" diameter hole

‘ \\ ,ﬁ Deck

]
T T

HESC —— | [

~—— Joint Filler

. L
Backwall —

1" diameter dowel @ 24"

Precast Approach Slab Connection Alternatives at Abutment
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Roadway Joint

When the roadway is concrete pavement, use 3 in. joint filler (Fiber Type) topped with %2 in. joint
sealant and 1 %2 in. x 18 in. smooth tie bars at 12 in. centers. When the roadway is asphalt, no joint
is required.

Expansion Joint

Joint systems will be placed between the approach section and paving section in the approach slab.
For information on approved expansion joint systems, see Section 3.1.7, Expansion Device Policy.

Two layers of SBS Modified Asphaltic Base Sheet placed on a steel troweled smooth surface will
provide a bond breaker for bridge expansion between the approach section and the grade beam.

Longitudinal Joints

Cast-in-place concrete approach and paving sections of bridge approaches should have a full-depth
construction joint, as shown below, placed at the centerline of the roadway or phase line if not
phased about the centerline. On approaches where half the clear roadway exceeds 21 ft., additional
longitudinal joints, as shown below, shall be placed at the edges of the 12’ traffic lanes. Bridge
Designers should check with the Roadway Designer for the location of the traffic lanes. The
minimum spacing from the last joint to outside edge of approach should not be less than 10 ft.

Sealant - Sealant
~
g N
30" #5 @ 12" / // .
' | \
| | \
\ \O S e o] ) o1
Twodmil —— , \ N
: b Two 4 mil
Polyethylene N / "
sheeting ~_ 7 ~_ 7 Polyethylene
Construction Joint Longitudinal Joint sheeting

CIP Approach Slab Construction and Longitudinal Joints

Precast concrete approach and paving sections of bridge approaches should have longitudinal
joints between precast panels are shown below. Two options are provided using ultra-high
performance concrete (UHPC) and high-early strength concrete (HESC).
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#U@12" %8.. ﬁ #5U @12"

/7

1. | " e y
e 0 A i

N

— 11" — 2#5
HESC /

HESC Longitudinal Joint

e }( G'ﬁ #5@12"
ol o | B ‘
i p = S~ v 1
e (7 . -
UHPC — 9" — i

UHPC Longitudinal Joint

Precast Approach Slab Longitudinal Joint Alternatives

Payment

The Pay Items “Concrete for Pavement Approaches Class 47BD-4000” (CY) and “Epoxy Coated
Reinforcing Steel for Pavement Approaches” (LB) includes all concrete and steel for placement
of the paving and approach sections, and all rail attached to the approaches.

Bridge Base Sheets

There is one reference file available for the approaches; (see Section 6). Zero, RHB, and LHB
skews are shown on Sheets A, B, and C, respectively (Section 6.12 thru 6.14).

2.4.1 — Concrete Reinforcement Policy

Bar Clearance

The minimum clearance, in inches, measured from the face of the concrete to the surface of any
reinforcing bar will be as follows:

Approach slabs: Top of slab =2 1/2” + 1/4* - 07

Bottom of slab = 3” for concrete slabs with A615 Grade 60 steel and 2 4 for concrete
slabs with A1035 Grade 100 Steel.

92



APPENDIX B: Design Calculations

Design of 14 in. Thick CIP Concrete Approach Slab Reinforced with A615 Grade 60 Steel

Design of 12 in. Thick Precast Concrete Approach Slab Reinforced with A1035 Grade 100 Steel
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Concrete Compressive Strength f.i=4 kei

Concrete Unit Weight w,:=145 pef
Aggregate Correction Factor K,:=1.0
2 £y (L33
Normal Weight Concrete MOE E_ :=120000 kst -K - = 1]. "r—L = 3987
' 1000 pef ksi W
Lightweight Factor A=if |w,.< 100 pef ,0.75,if |w, > 135 1_::.:;;“,1.1',.5-L =
1000 pef J J
Normal Weight Concrete MOR fr=0.24Ae0/f - ksi =0.48 ksi
Concrete Ultimate Strain £,.,=0.003
Design Strip Width h:=1 ft
Slab Thickness h:=14 in
Section Area A:=b+h=168 in’
: . beR? '

Section Modulus 5= = =392 in

¥
RBeinforcement Paramelers
Reinforcing Steel Yield Strength [y =60 ksi
Steel Modulus of Elasticity E :=29000 ksi
Steel Yield Strain £y ::;—yzﬂ,ﬂuz
Area of Long. Bot. Reinforcement A:=0.79 in® - == 1.58 in” #8@6"

i in
Depth of Long. Bot. Reinforcement di=h—3.5 in=10.5 in
Area of Long. Top Reinforcement A/:=0.31in" . ¥ =0.31 in” #5@12
in

Depth of Long. Top Reinforcement d':==2.5 in
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Flexural Strength Calculations
Stress Block Factor 1

Stress Block Factor 2

Tinitial Assumptions

Neutral Axis Distance from
Extreme Compression Fibers

Check Strain in Tension Steel
Check Strain in Compression Steel
Stress in Tension Steel

Stress in Compression Steel
Neutral Axis Distance from
Extreme Compression Fibers
Depth of Compression Block
Nominal Flexural Strength
Strength Reduction Factor for RC
Design Flexural Strength
Cracking Moment

Remand Calculations
Approach Slab Span

Approach Slab Width

Skew Angle

Reduction of Longitudinal Effects

Barrier/Rail Weight

A, =min|0.85, max |0.65,0.85 — 'r"‘—d)-ﬂ.ﬂﬁ] =0.85
ksi
iy £
v r=max | 0.75 , men |0.85,0.85— | ——=10|.0.02 | | =0.85
ksi
fx rzfn f\ﬁfr:fn
A f"_,A;.f“ -2.2 in
o f B+ b
I—c
=T, =0.011
[
e e~ 0.0004

fo=if(e,<e,,E, e, f,) =60 ksi

£
{EJJTEH'E.ur?fy'_F]:_IQ ksi

o3 '
fi=H e

e
-}

A *—.‘4:' ‘r
e 2l AT i
a - f G+ b

a=Fc=2.41 in
M, :=A,-f,- {d—%) — A f [d.'_%] —73.8 kip- ft
. - E.,-l_Ey
@e=mmin 0.9, max [0.65,0.65+0.25 ———— | |=0.9
0.005—¢,
M =g« M, =66.4 kip - ft

M, =S,-f,=15.7 kip- ft

L:=20 ft

W:=46.67 ft

8:=0 deg
ri=min(1,1.05-0.25-tan(6))=1

w,:=10.45 Hf
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2w,

Dead Load wy=150 pef-h-b+ +b=0.194 kif
Dead Load Moment Md:zur,i-%zzﬂ.ﬂ kip - ft

Critical Shear Section Distance r:=12 iﬂ+§=]?.25 in

Dead Load Shear Vd‘:wd'(%_m =1.664 kip

Future Wearing Surface Load w,:=25 paf -b=0.025 klf

2
Future Wearing Surface Moment M, = mb_-%: 1.25 kip- ft

Future Wearing Surface Shear V.=, [% —:::] =0.21 kip

Lane Load Wy =64 paf +b=0.064 klf
Lane Load Moment M e = wmﬂﬂ-’;: 3.2 kip - ft
Lane Load Shear Vi 1= Wi * %—m =0.548 kip

Tandem Load Moment per Lane Myiem =25 kip -w: 200 kip-ft

Tandem Load Shear per Lane V iander i= 50 Kip — 50 ﬁp-%—wzal.d kip
Equivalent Width (one lane) E =10 in+ E.-\,H'mm{L,r_mu fg'rmﬂ{w‘duﬁ] =132 in
Number of Design Lanes Np:=trunc v =3

12 ft
Equivalent Width  E,:=min |84 in+ e V{mm (L,60 ft)-min(W,60 ft) ,E =128 in
{multiple lanes) 12 Ny

b T 1 33 'ﬂ'f,;mu[err: :
=39.1 "
AT [:E, .Eﬁ} kip - ft

“Cracked Section” ., “Uncracked Section"} = “Cracked Section™

Service Moment M, =M+ M+ M.+

check =if (M, > M,

ot

M,
Cracking-to-Applied Ratio  R:= M. =0.4
ber-1.33.-M
Ultimate Moment M :=1.25-M 4+ 1.5:M 4+ 1.75- | M+ tandem | — 63.3 kip - ft

min (E, , E)
check :=if (I-;I =M, fInadequate Section™, “Adequate Sec tion”} =*“Adequate Section”

96



Flexure Capacity-to-Demand Ratio CD=—21=1.05

w

ber-1.33- V&mtdem

Ultimate Shear V, =125V, + 1.5V, +1.75+ |V, ..+ - =12.4 kip
mm(E1 ,Eg)

2hear Strength Calculations

Factor of concrete ability to transmit shear 3:=2 For h less than 16 in.

Mominal Shear Resistance of Concrete V.i=0.0316-3-A-y\/f. - ksi -b-d=15.9 kip
Strength Reduction Factor for Shear h,:=0.9

check =if {Vﬂ >, V., "Inadequate Section”, “Adequate Sec tion"’} =*Adequate Section”

i * Vﬂ
Capacity-to-Demand Ratio CD:= ¢ =1.16
Deflection Calculati
: E,
Modular Ratio 1= —=T.27
(bex? ¥ \
Location of Neutral Axis ~ x:=root lb :: +A(n=1) (z-d)-A,n-(d-z),2,0,h|=3.58 in
= a 9 ]
Cracked Section Moment of Inertia  I,.:= b f'n +Agne(d—z) +A4-(n—1)+(x—d') =736 in
L b * h:j ol 4
Gross Moment of Inertia I,:= T 9744 in
Effective Moment of Inertia I=R*I +(1-R").1 =866 in'
5 (wy+w,) L'
Dead Load Deflection A= 2 (u ! w) =0.07 in
384.E, -1,
5 L bereM ’
PR TH B o7 V) ] " — .
Live Load Deflection A==~ 4 Sanem 3.0 —a (2R | s
384+E, I, min(E, E,)-24-E_.I, 2
Temperature Calculations
Coefficient of Thermal Expansion o=6.107"
Change in Temperature AT:=90
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Temperature Strain
Temperature Movement
Shrink calculati
Volume-to-Surface Ratio
Volume-to-Surface Factor

Relative Humidity

Ep=ar AT=54.10""

TM:=£;«L=0.13 in

Humidity Factor for Shrinkage kp=2—-14-H=1.02

Initial Compressive Strength
Compressive Strength Factor
Age at End of Curing

Time from End of Curing

Time Development Factor

Shrinkage Strain
28-day Shrinkage Strain

28-dayShrinkage Movement

VS:=h
k. :=max (1 ,1.45-0.13 2) =1
Far)
H:=T0%
£ =2 ksi
i
k=2 FR 1 667
1 kﬁ"‘fci’
t!' =4 dﬂy
t:=0,5 day..365 day
i
k!d["’}:= r
1{]{]_4. \’.'t.
12 |— " | day +1
fr:.l'

20+

Ean(t)=048 107 ek oy o Ko Feypy ()

£ (28 day—1;) =2.64.10""

SM:=g,, (28 day—1,) - L=0.063 in

st (tj

kyq (28 day —1;) =0.324
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AASHTO LRED Crack Conlrol (5.6.7)

A
Tensile nonprestressed reinforcement ratio pi= 3 ‘*i =0.0125
L
The k-Factor k= \/2 nep+(n-p) —n-p=0.346
] . k:
The j-Factor ji=1 —?=U,EE
, , \ ' M, .
Tensile stress in nonprestressed reinforcement fei= i =32 ksi
Ag L
Exposure factor (1.0 for class I and 0.75 for class II) =1

Thickness of concrete cover from center of reinforcement d.:=3.5 in

r

Ratio of flexure strain to strain in reinforcement strain Bi=ld————=1.4T76
0.7 (h—d.,)
_ ) T00 ksi iy, )
Max. spacing of nonprestressed reinforcement s, = o -2d.=7.8in

Used spacing is 6 in., which is OK
AASHTO LRFD S&T Reinforcement (5.10.6)
Least width of the component h=W

Min. area of reinforement in each direction per foot

in®  0.0018.(60 ksi) b-h . in’
, =0.15 —
ft  2:(b+h)-min(f,,75 ksi)

. 2

'"'t | max [(1,11

ST

A =TT ([}.ﬁ
Max. spacing of S&T reinforcement Smagi=min (18 in, 3 h)=18 in

Used reinforcement is #5@12 in., which is OK
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il B )  Ericti

Granular Backfill MOE
Modulus of Subgrade Reaction
Tributary Area

Spring Stiffness

Friction Coefficient

Horizontal Spring Stiffness
Lonnector Stiffness Calculations
For #6 dowels

Bar Diameter

Bar Inertia

Bar Length

Connector Stiffness

for #7 dowels

Bar Diameter
Bar Inertia
Bar Length

Connector Stiffness

E:=4786 psi From M106 Project
E rr Lo .
r= — =247 pci (Khazanovich et al. 2001)
19.4 in
2'11':-21 ftz
kip

K=K Ap=35.5 —
n

p=10.6 Between granular backfill and concrete
Hip k=213 PP
in
dL:: D.TE i’"
ﬂ"dn'} W d
Iy:= =0.016 in
Eh::d iﬂ
12 E « T, ;
K= k! L 54 kfp
1’ in
d, = 0.875 in
"'Ir"':’if.l.L |
Iyi=———=10.029 in
Eh::4 i"
12 E, -1, i
Ky := _H b:]ﬁﬁ k.ip
ﬁb.i in
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Concrete Compressive Strength

Concrete Unit Weight
Aggregate Correction Factor
Mormal Weight Concrete MOE
Lightweight Factor
Normal Weight Concrete MOR
Concrete Ultimate Strain
Design Strip Width

Slab Thickness

Section Area

Section Modulus

Reinforcement Parameters
Steel Type

Steel Yield Strength

Steel Ultimate Strength

Steel Modulus of Elasticity

Area of Tension Steel

Depth of Tension Steel

Depth of Extreme Tension Steel
Area of Tension Steel

Depth of Tension Steel

f.:=5 ksi
w, =145 pef
Kr]_i': 1-{]

E.:=120000 ksi-K, - (

ul,.

1000 pef
wr.

Ai=if [ w, <100 pef.0.75,if | w, > 135 pef ,1,7.5—————||=1

v, <100 pef . 0.75,if |w, pef ’mmpcf]]

2 (fr (I.:i.i_ . .
] - lg] =4291 ksi

fri=0.24-Aey/f, - ksi =0.537 ksi

£, = 0.003
b=1 ft
h:=12 in

Am=h.h=144 in®

ASTM A1035 ChromX 4100
£,=100 ksi
fu=150 ksi

E,:=29000 ksi

_12in

6 in

0.6 in” =1.2 in’

A,
d:=h—2.5in=95 in
dyi=h—2.5in=705in
A/:=1+0.31 in® =0.31 in”

d=2.5in=2.5in

#7 @ 6"

#5 @ 12"
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LHexural Strength Calculations

Stress Block Factor 1 By e=min | .85, max | 0.65,0.85 — i; —4] -[].Uﬁ] =(L3
Stress Block Factor 2 o, :=max | 0.75, min | 0.85,0.85 — “f“_ —10]-0,02 ]:u.s-::
Strain in Compression Steel g,(e):= cd e,

i

Stress in Compression Steel

£ (e)=1f||e, (¢)| =0.0024, E, -/ (), ¥| |, (¢)| 2 0.02, f,, 170 ksi—

0.4317 ksi | &/(c)
|s_;[r_-]|+u.nﬂm] e, ()]

Force in Compression Steel C,(c):=A if (B, +c>d' ,min (80 ksi, [/ (c))—a, [.'. [ (c))

Compression in Concrete C.(e)=ay+f. +b-8-c

.
1

Strain in Tension Steel £,(c)=

Stress in Tension Steel

. 0.4317 ksi £,(c)
= | <0.0024, E,-£,(e). >0.02, f,, 170 ksi— .

file) H[EJLH— Eeile) i [e.(c)[20.02, £, 170 ksi e ()] + u.nnm] e,.[cl|]
Force in Tension Steel T(c)=A,-if (8,-c>d, f.(e)—a, [ f.(c))
Depth of Neutral Axis e,q=r00t (C.(c) +C, () =T (c),e,0.001 in, h) =3.24 in
Stress in Compression Steel S (€eg) =19.8 ksi
Stress in Tension Steel Fo(Ceg) =114 ksi
Compression Block Depth a:=f,-¢c,,=2.588 in
Nominal Flexural Strength M,:=C(e.q) [d - %J +C, (o) + (d—d')=93.1 kip - ft

d,—e,
Strain in Extreme Tension Steel £i=——L.g =0.0058
Coq
check :=if (£,>0.0066 , “Ten. Control”,if (£,>0.0042, “Trans.”, “Com. Control”)) = “Trans.”
i _ , £,—0.0042
Strength Reduction Factor chi=min|0.9, max|0.65.0.65+0.25- =
0.0066 —0.0042

Design Flexural Strength M i=c¢p-M,=T6.1 ft-kip
Cracking Moment M, =5,f.=12.9 kip- ft
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Demand Calculations
Approach Slab Span

Approach Slab Width

Skew Angle

Reduction of Longitudinal Effects
Barrier/Rail Weight

Dead Load

Dead Load Moment

Critical Shear Section Distance
Dead Load Shear

Future Wearing Surface Load
Future Wearing Surface Moment
Future Wearing Surface Shear
Lane Load

Lane Load Moment

Lane Load Shear

Tandem Load Moment per Lane

Tandem Load Shear per Lane

Equivalent Width (one lane)

Mumber of Design Lanes

Equivalent Width
{multiple lanes)

L:=20ft

Wi=46.67 ft

0:=0 deg
ri=min(1,1.05-0.25+tan(6))=1
w,.:=0.45 klf

2ew,
wyi=150 pefh«b+

+b=0.169 ki
W f

2

J"fd::wd'%:ﬂ.4ﬂ Hp 'ﬂ
. i 1
=12 m+52 16.75 in
. L .
V=g, [? —:ﬂ] =1.457 kip
w, =25 psf-b=0.025 kif

3

M =+ l; =1.25 kip- ft

VS:=w$-(%—x]=ﬂ,22 kip

Wione 3= 64 p‘f'h =0.064 “f
2

—=3.2 kip- ft

%—r =0.551 kip

ﬁ’firme = Wiape *
Vﬁuu_' = wfrrm-’ =

ﬂrftuﬂdrz]rﬁzz's Hp'wZEUU ﬁﬁ'ft

z 100 kip - ft

V st =50 kip — 50 Hp-'f 7 =41.5 kip

5+\min(L,60 ft)-min(W,30 ft)

Ey =10 in+ =132 in
12
_i_.?
N =trunc =3
12 ft
. . 144« v/ nun{L, 60 smun W, 60 W ]
E, :zmm[ﬁd in+ ";mm( . lf;] mm( ft} "N =128 in
L
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ber«1.33 'I"ftrmdnm
min (B, F)
check =if (JH,, =M., “Cracked Section”, “Uncracked Sectiou"} =*“Cracked Section™

Service Moment M, =M +M,+M,,, + —37.9 kip- ft

Cracking-to-Applied Ratio R::f =0.34

bore 133« M0 dem
min {E1 ,4‘-'32)

Ultimate Moment M, :=1.25-M + 1.5-M,+1.75+ [Mm,,,,_ o ]:ﬁm kip - ft

check :=1f {ﬂ-f“ =M. “Inadequate Section”, “Adequate Sentinn-“} = “Adequate Section”

1,
Flexure Capacity-to-Demand Ratio  CD:= =1.23

bere1.33.V

Ultimate Shear V,:=1.25-V,;+1.5-V,+ 1.75: |V, .+ ! - tandem | _19.2 kip
min (E,,E,)
st During Lifti
Length of Panel Overhang o:=5 fi
2

Negative Moment at Lifting M, :=1.5-150 pef -b- h-%=2,81 kip - ft
Positive Moment at Lifting M,,,:=1.5.150 pef-b-h- (£ _;] —M,,.=3.52 kip- ft
2hear Strength Calculations
Factor of concrete ability to transmit shear 3:=2 For h less than 16 in.

MNominal Shear Resistance of Concrete V,=0.0316+ 3 X/ '+ ksi -b-d=16.1 kip
Strength Reduction Factor for Shear ¢, :=0.9

check =if (V,,> ¢, - V. “Inadequate Section”, “Adequate Section”) = “Adequate Section”

'EI-V:"
Capacity-to-Demand Ratio UD::‘j’ ~=1.19
peflection Calculati
. E,
Modular Ratio L= = =6.76
- bex®

Location of Neutral Axis T :=root =

+ A, (n-1) [3:—d']—A,-n-{d—x],x,ﬂ?h]:l'}d in
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Cracked Section Moment of Inertia

Gross Moment of Inertia

Effective Moment of Inertia

Dead Load Deflection

r 4
5w L

Live Load Deflection =~ A;:=

I.,.:= 0-F +A3—n-[d—1‘]z +A_.,'-[n—1}-[:.r—d'}z=451 in'
3
1=2 1728 i
12
I:=R*-I,+{1-R*) I, =501 in'
5« (wy+w,)-L"
384-F,-I,

bere *'wi.m:dnm

Shrink Calculati
Volume-to-Surface Ratio
Volume-to-Surface Factor

Relative Humidity

Humidity Factor for Shrinkage

Initial Compressive Strength
Compressive Strength Factor
Age at End of Curing

Time from End of Curing

Time Development Factor

Shrinkage Strain
28-day Shrinkage Strain

28-dayShrinkage Movement

3.0% -4 [L_Tiﬂ] ]:D.T in

+
384-E I,  min(E,, Ey)-24-E I,
VS:=h
.‘::S::max[l, 1.45—0.13-£]=1
in
H:=70%
kp=2—1.4.H=1.02
fei'=2.5 kai
L ST
1 ksi+f.
ti::-'l dﬂy
£:=0,5 day..365 day
t
kh{(t}:= f K
LDU—d-k;
12 7 day +1
20+ k4 (28 day — t;) = 0.333

Ea(t) =048 107 k- key - kepekeyy (1)
€. (28 day—t;) =2.33.107"

SM:=g,, (28 day —t;) - L=0.056 in
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Erh{t}

t (day)
AASHTO LRED Crack Confrol (3.6.7)
, , , A,
Tensile nonprestressed reinforcement ratio pi= v 0.0105
The k-Factor k= \/'2 nep+ [-n-p]_ —n-p=0.313
] . k
The j-Factor ji=1l=—=0.9
3
M
Tensile stress in nonprestressed reinforcement foi= = ° y =44.5 ksi
s*Je
Exposure factor (1.0 for class I and 0.75 for class II) Yer=1

Thickness of concrete cover from center of reinforcement d.:=2.5in

e

(=

Ratio of flexure strain to strain in reinforcement strain B.i=1 +m: 1.376
. 1— i,
_ _ 700 ksi-in-7, -
Max, spacing of nonprestressed reinforcement  s,,..:= o —2d.=6411in
Hg®tas

Used spacing is 6 in., which is OK
AASHTO LRFD S&T Reinforcement (5.10.6)
Least width of the component b:=12 ft

Min. area of reinforement in each direction per foot

s | 3 .o .4
. 0.0018+ (60 ksi) b-h )
A, i = TR {D,ﬁ mT,umx [{],11 . [ ' } 5 =011 i

ft "_?-{h+h]-rwén|[fy._?5 M}JJ f_t

Max. spacing of S&T reinforcement Syuar = MiN (18 0,3 h)=18 in

P

Used reinforcement is #5@12 in., which is OK
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APPENDIX C: Precast Concrete Approach Slab Construction
Approach Slab on Highway 60 Bridge near Sheldon, 1A
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Threading longitudinal post-tensioning strands
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Casting longitudinal joint

109



Grouting underneath the precast panels
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Matching panels at the end of floor
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Damage at panel corners
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Approach Slab at Big Brown Creek Bridge on River Road (S-86), Union

County, SC

Panel base preparation

Vertical dowels for the end of floor connection
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Complete installation of skewed panels
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Reinforcement of longitudinal joints

S N

Casting longitudinal joints
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Asphalt cracking at paving end of the approach slabs
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Approach Slab at Belden-Laurel Bridge on US 20, Cedar County, NE
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Longitudinal Joints

118



| spht crking a the nd of Ior
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Paving Section Slab on 1-680 / West Center Bridge, Douglas County, NE

Panel curing
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Panel installation
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Precast panel joints and connections
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