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Abstract 

Load and Resistance Factor Rating (LRFR) is a reliability-based rating procedure 

complementary to Load and Resistance Factor Design (LRFD). The intent of LRFR is to provide 

consistent reliability for all bridges regardless of in-situ condition. The primary difference 

between design and rating is the uncertain severity and location of deterioration, including the 

potential future loss of strength for an element already evidencing deterioration. Ostensibly, 

these uncertainties are addressed by applying an additional strength reduction factor: the 

condition factor, ϕc. Currently, condition factors are nominally correlated to the condition of the 

member, which can be Good, Fair, or Poor. However, definitions of these condition categories 

are deferred to inspection documents, which themselves lack clear, objective definitions. 

Furthermore, lack of guidance to account for the location and extent of deterioration exacerbates 

confusion in the methodology to appropriately assign condition factors. These ambiguities cause 

incoherence between inspection and rating processes by introducing additional uncertainty. The 

additional uncertainty skews load ratings, sometimes producing ratings with unintended 

conservativism, and sometimes overestimating the safe load-carrying capacity of a bridge. This 

study presents a calibration of ϕc to be used with steel girder bridges, accounting for uncertainty 

due to non-uniform deterioration throughout transverse sections, unquantified severity of section 

loss associated with condition states, lack of knowledge of the longitudinal location(s) of the 

deterioration, and the likelihood of further deterioration over the next inspection cycle for ranges 

of section loss for each condition. The proposed condition state definitions and implementation 

methodology are intended to improve uniformity in the inspection process and produce bridge 

load ratings that are more consistent with the target reliability intended by the LRFR rating 

procedure.
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Chapter 1:  Introduction 

Bridge inspections and evaluations are performed to establish the safe load-carrying 

capacity of bridges, accounting for, among other things, new and ongoing deterioration. 

AASHTO LRFD imposes an implicit acceptable level of reliability for bridges and their 

components at the design stage to ensure sufficient safety. Reliability is defined by achieving an 

acceptably small probability of failure, which requires the quantification of demand and capacity 

means (expected values) and dispersions (uncertainties). Corrosion both decreases the expected 

value and increases the uncertainty in capacity. 

The American Association of State Highway and Transportation Officials (AASHTO) 

Manual for Bridge Evaluation (MBE) requires load rating to be performed using the Allowable 

Stress Rating (ASR), Load Factor Rating (LFR) or Load and Resistance Rating Factor (LRFR) 

(AASHTO, 2014). LRFR is the most recently developed among these methods, and parallels 

LRFD (the preferred method for design of AASHTO). NDOR has adopted LRFD for the design 

of new bridges since 2010, so it is expected that LRFR will be used increasingly in the future to 

evaluate aging bridges designed according to LRFD. 

LRFR fundamentally seeks to maintain consistent reliability across all bridges, including 

accounting for deteriorated structural elements. Section 6A.4.2.3 of the MBE introduces the 

condition factor, ϕc, to account for “increased uncertainty in the resistance of deteriorated 

members and the likely increased future deterioration of these members during the period 

between inspection cycles.” (AASHTO, 2014).  
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Figure 1.1 The purpose of ϕc  

 

Figure 1.1 illustrates the concepts and intent underlying ϕc. The first graph in the figure 

shows the variable demand and capacity of a new girder. Failure occurs when demand (an 

uncertain value, represented by the red/left probability distribution) exceeds capacity (also an 

uncertain value, represented by the blue/right probability distribution). As the girder deteriorates, 

capacity decreases, resulting in a shift of the capacity curve to the left, as seen in the second 

graph. In the second graph, capacity is calculated using the remaining section (i.e., sound 

material area), but this assessment does not capture the increased uncertainty in capacity due to 

deterioration. The third graph has a higher dispersion in the capacity (quantified by a higher 

standard deviation), which captures the increased uncertainty associated with deterioration. ϕc 

shifts the deterministic “capacity” used in rating downward to reflect this increased uncertainty 

and the consequently higher probability of failure.  
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Increased uncertainty in deteriorated girder capacity results from: 

• non-uniform deterioration across any given girder cross-section 

• uncertain location of deteriorated conditions along the span 

• likelihood of future deterioration  

• human error during inspections  

NCHRP 301 by Moses and Verma first introduced the condition factor. The primary 

intent and basis for the condition factor was to account for future corrosion in a girder, 

depending on various environmental factors. NCHRP 301 identified three general categories to 

represent a range of corrosive environments: rural, industrial, and marine. These corrosive 

environment classifications approximately correspond to the three condition states currently 

recognized by the MBE as the determinants for ϕc: “Good or Satisfactory”, “Fair”, and “Poor”. 

The recommended values in NCHRP 301 reflected observations of varying losses from a field 

test program that subjected steel plate specimens to various corrosive environment scenarios. 

Inspection detail varies with the type of inspection performed in the field (e.g., routine 

versus special) and with the individual performing the inspection, producing additional 

uncertainty in capacity from bridge to bridge. Pertinent inspection details for the characterization 

of ϕc include the spatial dispersion and severity of deterioration. The inspector typically notes 

some information regarding section loss during the inspection, but either or both the location and 

severity of the deterioration may be omitted from the inspection report. 

In a new bridge, the critical location for all the modes of failures (flexure, shear, bearing) 

are known. For example, the location of the minimum load to capacity ratio is near the mid-span 

because the uniform cross-section of a new girder provides uniform load capacity along the span. 

The same girder after deterioration would have non-uniform load carrying capacity, which could 
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move the critical location away from the mid-span. If the cross-section along the span is 

unknown, there will be uncertainty in the location of the critical section. 

The MBE defers the task of providing member condition definitions (Good versus Fair 

versus Poor) to the Manual for Bridge Element Inspection (MBEI). However, the MBEI also 

lacks clarity and objective definitions. Furthermore, lack of guidance to account for the location 

and the extent of deterioration exacerbates confusion when classifying the member into one of 

the three general conditions. In practical terms, the problem is that load ratings produced based 

on existing guidance in MBE and MBEI do not consistently provide the target level of reliability, 

as intended by the LRFR procedure.  

The problem is complex, and it is not possible to conclusively say that the current 

guidance for load ratings produces either conservative or unconservative estimates of load 

ratings, because the outcome will vary from bridge to bridge. However, it would be reasonable to 

presume that the current format and practices would in general produce significantly 

conservative load ratings. Deteriorated conditions at a support should rationally be reflected in 

shear and bearing limit states only, if deterioration near midspan is negligible. Instead, a 

superstructure assessed to have a condition lower than “Good” will need to be evaluated with a 

ϕc penalty to all limit states. A bridge could require load restriction on this basis of unfairly 

penalized flexural strength, even though the deterioration at supports is insufficient to 

compromise shear and/or bearing severely enough to control over (actual, non-deteriorated) 

flexure, and deterioration is in fact negligible in the load carrying capacity of the structure. This 

outcome must necessarily disincentivize use of LRFR as a result of insufficient guidance for the 

application of ϕc. 
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The objective of this research is to provide a procedure to select a calibrated ϕc 

appropriate to field conditions, accounting for the uncertainty due to non-uniform deterioration 

in the girder across a section, the lack of knowledge of the location of the deterioration, and the 

likelihood of further deterioration over the next inspection cycle. To address these challenges, 

the following four objectives were identified:  

1. survey, describe, and categorize inspection methods, policies, and procedures 

used by NDOR; 

2. identify and categorize types of corrosion commonly observed for steel girder 

bridges; 

3. formulate and assess the relationship between deterioration, loss of capacity, and 

increase in uncertainty; and  

4. develop a procedure to map knowledge available from inspections to 

corresponding condition factors, ϕc, and the reduction in nominal capacity. 

The scope of this study is constrained to: 

• simple span girder bridges, 

• rolled steel girders of mild steel with yield strengths of 36 ksi, 

• carbon and weathering steel, 

• projected future deterioration within a 2-year inspection cycle, 

• composite girders with concrete slabs having depths of 8 inches and specified 

compressive strengths of 4 ksi, 

• compact cross-sections in flexure, and 

• consideration of flexural limit states. 
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Chapter 2:  Literature Review 

Calibration of ϕc requires an understanding of the bridge inspection and evaluation 

process, the effects of corrosion, and the use of ϕc in LRFR. Section 2.1 Overview of Bridge 

Inspection and Evaluation discusses the details of bridge inspection and evaluation. Section 2.2 

Deterioration Mechanisms and Rates provides a description of the effects of corrosion in the 

steel bridges, the rate of corrosion for carbon and weathering steels, and documented patterns of 

corrosion seen in the field. Section 2.3 Development of LRFR provides a summary of the LRFR 

load rating procedure, along with the history of the ϕc. Finally, section 2.4 Steel Bridge 

Reliability discusses previous studies on the effects of corrosion on steel bridge reliability. 

2.1 Overview of Bridge Inspection and Evaluation 

The Federal Highway Act of 1968 required the Secretary of Transportation to establish a 

National Bridge Inspection Standard (NBIS) in 1971. The NBIS established a national policy 

regarding inspection procedures, the frequency of inspections, qualifications of personnel, 

inspection reports, and maintenance of state bridge inventory (Federal Highway Administration, 

2012). Over time, the Federal Highway Administration (FHWA) has developed reference 

manuals, including the Bridge Inspector’s Training Manual 70, Manual for Maintenance of 

Bridges, Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s 

Bridges, The Bridge Inspector’s Manual for Movable Bridges, Culvert Inspection Manual, 

Inspection of Fracture Critical Bridge Members, etc. A selection of the current FHWA reference 

materials are discussed below: (Federal Highway Administration, 2012) 

• Bridge Inspector’s Reference Manual (BRIM) 

A manual for inspectors that includes: a bridge inspection program; safety fundamentals 

for bridge inspectors; bridge terminology; bridge inspection reporting; bridge mechanics; bridge 

materials, inspection and evaluation guidance for bridge decks and areas adjacent to bridge 
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decks; inspection and evaluation guidance for superstructures, bridge bearings, and 

substructures; characteristics, inspection and evaluation of culverts; and advanced inspection 

methods for complex bridges. 

• Manual for Bridge Element Inspection (MBEI): 

The MBEI defines a comprehensive set of elements, and is intended to be flexible 

in nature to satisfy the needs of all agencies. Elements are characterized into four general 

condition assessment categories: Good, Fair, Poor and Severe. Criteria and definitions for 

each condition state are defined separately for each type of element. 

• Manual for Bridge Evaluation (MBE): 

The MBE is a standard for providing uniformity in the procedures and policies used to 

determine the physical condition, maintenance needs, and load capacity of the nation’s highway 

bridges. It assists bridge owners by establishing inspection procedures and evaluation practices 

that meet the NBIS.  

• Recording and Coding Guide for the Structure Inventory and Appraisal (SI&A) of the 

Nation’s Bridges:  

This guide has been prepared for state, federal, and other agencies to use for recording 

and coding the data elements that will comprise the NBI database. This guide is used to 

formulate an accurate report for Congress on the quantity and condition of the nation’s bridges. 

The coded items in this guide are considered an integral part of the database that can be used to 

meet several federal reporting requirements, as well as part of the states’ needs. This guide is 

used to generate reports to be submitted to the Highway Bridge Replacement and Rehabilitation 

Program and the National Bridge Inspection Program (Weseman, 1995). The broad NBI 

condition ratings (superstructure, substructure, and deck) have been collected for all bridges, 

both on and off the National Highway System (NHS) since the NBIS was established in 1971. 
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Condition ratings and other functional and geometric bridge data is used by FHWA to determine 

Sufficiency Ratings for funding prioritization (Bridge Inspection Manual NDOR). 

• Code of Federal Regulation: 

The purpose of the regulations in this part is to implement and carry out the provisions of 

federal law relating to the administration of federal aid for highways. This federal aid policy 

guide describes the process followed by FHWA when distributing federal funding to the states 

for transportation. It also contains requirements that the state governments need to fulfill for the 

federal funding (Federal Highway Administration, 2010). 

2.1.1 Bridge Inspection Types and Reporting 

The MBE requires that bridges be inspected at regular intervals, not to exceed 24 months 

without prior approval from FHWA and justification by past reports and performance history and 

analysis. MBE describes various types of inspections, including initial inspections, routine 

inspections, damage inspections, in-depth inspections, fracture-critical inspections, underwater 

inspections, and special inspections. 

The types of inspections require various levels of rigor with respect to details about a 

bridge and its elements. There are two major types of routine inspections: Structure Inventory 

and Appraisal (SI&A) and Element Level Inspection. These inspections have fundamentally 

different inspection reporting techniques. SI&A reports the overall condition of bridge parts like 

the superstructure, the substructure, or the deck. Element Level Inspection requires reports of the 

condition of all bridge elements, such as girders, abutments, piers, etc. 

NDOR inspections include the SI&A bridge condition ratings for reporting to NBI, but 

load ratings are typically evaluated using Element Inspection data. 
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Use of Element Level Inspection allows NDOR to manage their bridge inventory more 

effectively by: 

• quantifing and describing element conditions observed during the inspection and the 

extent of deterioration; 

• identifing candidates for preservation, maintenance, rehabilitation, improvement (i.e. 

widening, raising, strengthening) and replacement practices/strategies; 

• predicting future deterioration of bridge elements for scheduling purposes; and 

• managing their budgets for bridge preservation. 

(Nebraska Department of Roads: Bridge Division, 2015)  

2.2 Deterioration Mechanisms and Rates 

The MBEI requires inspection of all elements for various defects including corrosion, 

cracking, connection defects, delamination/spall/patched area, efflorescence/rust staining, 

cracking, deterioration, distortion, and damage. The most common form of deterioration 

identified in inspections of steel girders is corrosion – the oxidization of metal through a reaction 

involving oxygen, water, or other agents. Corrosion is an electrochemical process between two 

metals: the metal components having a higher tendency to corrode (anode) and the metal 

components having a lower tendency to corrode (cathode). When an electrolyte is present, 

current flows and oxidation occurs. The electrolyte usually present on bridges is water (Kulicki, 

Prucz, Sorgenfrei, Mertz, & Young, 1990). While corrosion can occur through a variety of 

mechanisms (galvanic corrosion, crevice corrosion, pitting, intergranular corrosion, selective 

leaching, erosion corrosion, stress corrosion, hydrogen damage), all corrosion mechanisms cause 

section loss, and it is not necessary to consider each individually.  
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NCHRP report 333 addressed four major corrosion effects: loss of section, creation 

of stress concentration, introduction of unintended fixity, and introduction of unintended 

movement (Kulicki et al., 1990). The loss of section reduces the geometric properties, 

such as the moment of inertia, radius of gyration, slenderness ratio of the web, and flanges 

(Kayser & Nowak, 1989a). This reduction lowers the bending, axial and shear capacity of 

the member, and can also affect the fatigue life of the member because of the increased 

stress range (Czarnecki & Nowak, 2008). Out of the four effects of corrosion, this study 

focused on the loss of section due to corrosion. 

2.2.1 Rate of Corrosion 

The rate of corrosion depends on an extensive list of parameters. One of the primary 

considerations is the presence of electrolytes, such as water, oxygen, and salt. Electrolyte 

concentration varies depending on the environment. Marine environments, for example, possess 

a higher abundance of water and salt, and therefore experience a significantly increased rate of 

corrosion (Kayser & Nowak, 1989a). Komp (1987) studied corrosion rates for various metals 

and environments, including carbon and weathering steels, and rural, urban, and marine 

environments. Komp proposed an asymptotic function, shown in Eqn. (1), to predict the 

corrosion in metal. Parameters A and B are specific to the type of steel and environment, as 

shown in Table 2.1. The equation captures the decreasing corrosion rate over time from field 

observations with B coefficients less than unity. 

 𝐶𝐶 = 𝐴𝐴𝑡𝑡𝐵𝐵 (1) 

𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝑡𝑡 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 

𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
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Table 2-1 Corrosion parameters in Komp's corrosion model 

 
 

Komp’s model is plotted for each combination of steel material and environment in 

Figure 2.1 and Figure 2.2. Although various models are available for corrosion rate prediction, 

researchers that have formerly studied bridge deterioration have frequently chosen to use 

Komp’s model (Moses and Verma, 1987; McCrum, Arnold, and Dexter, 1985).  

Komp followed ASTM G 50-10 “Standard Practice for Conducting Atmospheric 

Corrosion Tests on Metals” to evaluate the corrosion resistance of metals when exposed to 

weather, as well as to evaluate the relative corrosivity of the atmosphere at a specific location. 

The test sites – described as rural, industrial (urban), and marine atmospheres – were 

characterized in accordance with practice G92 “Practice for Characterization of Atmospheric 

Test Sites.”  

 

Environment Carbon Steel Weathering Steel 
A B A B 

Rural 34.0 0.65 33.3 0.50 
Urban 80.2 0.59 50.7 0.57 
Marine 70.6 0.79 40.2 0.56 
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Figure 2.1 Average corrosion of carbon steel using Komp's model 

 
 

 
 

Figure 2.2 Average corrosion of weathering steel using Komp’s model 
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Corrosion rate is typically expressed either as penetration per year or loss in thickness 

over a specified exposure period. ASTM G 50-10 defines corrosion rate as the average of the top 

and bottom surface losses for test samples (ASTM International, 2015). Corrosion rates are 

influenced by climate and shelter conditions, the orientation of exposed surfaces, the angle of 

exposure, and the presence of moisture and deicing salts. Out of these factors, shelter, 

orientation, and deicing salt more significantly affect the rate of corrosion. McKenzie suggested 

multipliers to modify corrosion rates for the sheltered versus exposed corrosion condition, as 

shown in Table 2.2. Lastly, deicing salts cause approximately 2.75 times more corrosion than the 

absence of salt, according to Albrecht and Naeemi (Albrecht & Naeemi, 1984; Moses & Verma, 

1987). 

 

Table 2-2 Corrosion penetration of sheltered VS exposed conditions 

 
 

2.3 Development of LRFR Methodology 

The MBE describes three load rating procedures to establish bridge live load capacity. 

This research focuses on LRFR, which is intended to calculate the remaining live load capacity 

of a bridge with more consistent reliability than alternative methods (ASR and LFR). In the 

standard MBE load rating formulation, the dead and permanent loads are subtracted from the 

capacity and the remainder is then divided by the live load to calculate the load rating. A load 

rating value greater than 1 means that the bridge can reliably carry the design live load. A load 

Environment Corrosion for sheltered conditions 
Corrosion for exposed conditions 

Rural 1.0 
Industrial 1.7 

Marine 2.0 
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rating value less than 1 means that the bridge cannot reliably carry the traffic load modeled as 

live load and may need to be posted for a lower load to avoid failure. 

The capacity term includes multiple factors: ϕ, ϕs, and ϕc. The ϕ factor is obtained from 

the corresponding LRFD limit state, and accounts for typical sources of capacity uncertainty 

recognized in design: fabrication tolerances (e.g., flange thickness), material properties (e.g., 

steel yield strength), and common professional assumptions (e.g., effective composite slab 

width). The system factor, ϕs, is typically a penalty for a lack of redundancy in the structure for 

the element under consideration. It is permitted to increase ϕs beyond 1, but the allowance is 

relegated to the commentary with little guidance to facilitate implementation. The condition 

factor, ϕc, accounts for the increased uncertainty associated with the deteriorated conditions. 

Additional details of load rating formulation and terms are presented in Chapter 4: Reliability 

Analysis. 

LRFR addresses two levels of safety: inventory and operating. Safety is ensured at each 

of these levels by selecting particular values for a reliability index, which is a measure of the 

probability of failure. The inventory rating corresponds to a reliability index of 3.5 (0.023% 

probability of failure during the design life), and the operating rating corresponds to a reliability 

index of 2.5 (0.62% probability of failure). LRFD is calibrated to produce structures that satisfy 

inventory rating at design. AASHTO allows bridges to be rated at the lower operating target 

reliability level, justified with a biannual inspection. LRFR produces ratings corresponding to the 

respective rating levels by stipulating appropriately calibrated live load factors: 1.75 for live load 

in the Strength I combination at inventory level versus 1.35 at operating level. The resistance 

factor and other load factors do not change for the two rating levels.(AASHTO, 2014) 
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The LRFR condition factor accounts for the increased uncertainty in the capacity due to 

deterioration. Moses and Verma introduced the condition factor in NCHRP 301 to account for 

future corrosion. NCHRP 301 classified girder conditions into three categories: Good, Slight, 

and Severe. Corresponding “capacity reduction factors” are presented in Table 2.3. The capacity 

reduction factors are effectively ϕc values, but are referred to only as ϕ factors. NCHRP 301 pre-

dated AASHTO LRFD, although the report notes that LRFD is used in other specifications, such 

as the material specifications produced by the American Institute of Steel Construction (AISC) 

and the American Concrete Institute (ACI).  

 

Table 2-3 Condition rating and the penalization from NCHRP 301 

 
 

NCHRP 301 used Komp’s corrosion model (refer to 2.2.1 Rate of Corrosion) for various 

environments to estimate future corrosion, and assumed that environments corresponded to 

deteriorated girder conditions (see Table 2.4). The authors assumed that rural environments 

corrode to “Good” condition, urban environments corrode to “Slight” deterioration, and marine 

environments corrode to “Severe” condition. Estimated section losses in NCHRP 301 included 

multipliers to account for deicing salt and sheltered conditions (see 2.2.1 Rate of Corrosion). The 

amount of loss expected per side of a plate element over 2 years is summarized in Table 2.5 for 

each condition state. NCHRP 301 reported an estimated mean section modulus reduction for a 

W27x94, as reproduced in Table 2.6. (Moses & Verma, 1987).  

 

Condition Capacity Reduction Factor, ϕ  
Good condition 0.95 

Slight corrosion, some section loss 0.85 
Severe corrosion, considerable section loss 0.75 
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Table 2-4 Corrosion rate for carbon steel for different corrosion of section 

 
 
 

Table 2-5 Calculation of average thickness loss for difference corrosion of section 

 

 

 
Table 2-6 Summary of % reduction in section modulus (2 years) 

 
 

The penalty to the section modulus for the remaining section is reflected in a bias term 

(i.e., the ratio of mean to nominal values for a parameter). Variation of losses at specimens 

observed during ASTM testing were quantified as coefficients of variation, COVs, and 

approximated in ϕ factors using a simplified formulation. The values implemented in NCHRP 

301 are summarized in Table 2.7. Note that a bias of 1.1 corresponds to the design assumption 

for new construction at the time. The flowchart in Figure 2.3 summarizes the procedure proposed 

in NCHRP 301 to account for deterioration. 

 

 

Corrosion of Section Type of Environment Eq. H-1 
Normal, Good Condition Rural  C = 34 t0.65 

Medium, Slight Corrosion Industrial C = 65 t0.5 
Severe Corrosion Marine C = 80 t0.8 

Condition of 
Section 

Eq. H-1 (2 years) Multipliers* Eq. 
H-1 

Amount of Thickness loss 
per side, mils 

Good condition 34*20.65=53.35/25.4 2.10 * 2.75 * 1.0 5.77 = 6 
Slight corrosion 65*20.5=91.92/25.4 3.625 * 2.75 * 1.7 16.9 = 17 
Heavy corrosion 80*20.8= 139.29/25.4 5.48 * 2.75 * 2.0 30.16= 30 

Condition of Section % reduction in Section modulus (mean, 2-year period) 
Good condition 1.8 
Slight corrosion 5.0 
Heavy corrosion 9.0 



17 

 

Table 2-7 Summary of bias and COV for different section condition 

 
 

Moses revisited the condition factor in NCHRP 454 (Moses, 2001). In that report, Moses 

clarified that adjustments to sound material area should be decoupled from the increased 

uncertainty associated with deteriorated conditions. Load ratings should be performed using the 

sound material area at the time of inspection. Accordingly, the condition factors presented in 

NCHRP 454 are slightly higher than those in NCHRP 301. The values in NCHRP 454 have been 

incorporated into the MBE. 

 

 Bias COV 
New condition, steel member 1.10 12% 

Partially corroded with some section loss 1.05 16% 
Severe corrosion with considerable loss of section 1.00 20% 
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Figure 2.3 Flowchart for selecting resistance factor according to NCHRP 301 

 

2.4 Steel Bridge Reliability with Deterioration 

Kayser and Nowak (1989a, 1989b) discussed the impact of deterioration on long-term 

performance of steel girder bridges. Aspects of the work appear to be unrepresentative of typical 

bridges. In Kayser and Nowak (1989a), for example, the authors provide a figure illustrating the 

variation in moment capacity with flange thickness loss. The figure appears to indicate that a 

W30x99 noncomposite girder with a flange loss of less than 0.03 inches will incur a loss in 

capacity of approximately 30%. The general trends of plots appear reasonable, such as shear 
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capacity transitioning from a yielding to a buckling mechanism, but the exact values may need to 

be carefully validated before considering implementation in present studies.  

Kayser and Nowak indicated in both articles that shear could potentially control 

deteriorated steel girder bridge capacity, but this finding, too, seems unrealistic. In Kayser and 

Nowak (1989a), the paper culminates with example rating variations over time, governed by 

flexure, shear, and bearing with and without stiffeners present. Two cases are presented: a 12 m 

(40 ft) bridge, and a 18 m (60 ft) bridge. The paper found that flexure would continuously 

control the rating for the 18 m bridge over the 50 year life of the structure, if stiffeners were 

provided. However, the authors found that the 12 m bridge would be governed by shear after 

about 15 years of deteriorating service. The initial load ratings for the 12 m bridge were similar, 

at about 1.8 in flexure and 2.0 in shear. The 18 m bridge, on the other hand, had initial load 

ratings of about 1.5 in flexure and 3.0 in shear, which would seem to be a more typical 

comparative relationship for a steel girder system than the nearly identical 12 m bridge ratings. 

While the theoretical frameworks discussed by the authors hold merit, the findings themselves 

are not of particular use to the present study. 

Wang (2010) described a framework, developed through a PhD program under the 

supervision of Dr. Bruce Ellingwood, to explicitly incorporate reliability in highway bridge 

condition assessment. The proposed framework is arranged into three levels. The first level is 

similar to that discussed in this report, where relatively coarse information is mapped into LRFR 

condition factors. The second and third levels incorporate more detailed bridge-specific 

conditions, such as material strength and load patterns, with component-level (second tier) and 

system-level (third tier) refinement. In the first level, the research traces coarse SI&A 

superstructure condition rating for concrete bridges to phenomenological deterioration models 
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(estimated reinforcing section loss), also accounting for projected future losses. As the SI&A 

rating fell, the expected value of capacity reduced, and the capacity uncertainty increased. The 

variation of probabilistic capacity metrics was mapped through reliability analyses to identify 

optimum condition factors, as summarized in Table 2.8. 

 

Table 2-8 Proposed condition factors by Wang (2010) 

 

  

Structural Condition Rating (SI&A) ϕc  
≥ 8 1.0 
7 0.95 
6 0.85 
5 0.75 

≤ 4 0.70 
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Chapter 3:  Overview of Methodology 

Condition factors (ϕc) in LRFR account for increased capacity uncertainty associated 

with deterioration. This study includes the uncertainties in capacity associated with the severity 

and location of deterioration along a girder. These uncertainties are primarily influenced by the 

level of detail available from inspections. 

3.1 Condition States and ϕc 

The MBE recognizes three member condition states for deteriorated elements (e.g., 

girders). Table 3.1 lists the three structural conditions of the member and their corresponding ϕc 

reduction according to the MBE. The MBE does not provide definitions for these structural 

condition states. Rather, the MBEI should be consulted to assess conditions based on defects 

observed during field inspections. 

 

Table 3-1 MBE structural condition of member and corresponding ϕc values 

 
 

The MBEI provides guidance to assess and classify severity for multiple defects at each 

of hundreds of elements. This research focuses on corrosion of steel girders, element #107 in the 

MBEI. MBEI condition state criteria are ambiguous and subjective. For example, condition state 

4 is simply characterized by, “the condition warrants a structural review.” As an alternative to 

using MBEI condition states, the MBE commentary suggests the approximate correlation shown 

in Table 3.2, using SI&A reported superstructure condition ratings. A discussion of how 

Structural Condition of Member ϕc 
Good or Satisfactory 1.00 

Fair 0.95 
Poor 0.85 
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deterioration severity ambiguity was addressed in this research is found in a later section (refer to 

5.3 Uncertainty due to Range of Section Loss in each Condition State).  

 

Table 3-2 MBE condition state rating Table 6A.4.2.3-1 

 
 

A review of bridge inspection reports found that the availability of detailed information 

varied significantly across the inventory. For example, county bridges generally had fewer 

details compared to state bridges inspected by NDOR personnel. Consequently, this study 

proposes multiple approaches to assign ϕc, as appropriate, to the available detail from 

inspections. The approaches are listed below with the corresponding appropriate level of detail 

available from inspections.  

• Approach 1: Only the worst condition state in the girder is known. 

• Approach 2: All condition states present in the girder and the corresponding total length 

of girder segments classified in each condition state are known. 

• Approach 3: All condition states present in the girder and the corresponding length of 

girder segments classified in each condition state along with the location, are known. 

• Special Approach: Deterioration profile (i.e., % section loss) along the span is known. 

 

Superstructure Condition Rating  
(SI & A Item 59)  

Equivalent Member  
Structural Condition  

6 or higher Good or Satisfactory 
5 Fair 

4 or lower Poor 
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3.1.1 Inspection Methods, Policies, and Procedures in use by NDOR 

The NDOR Bridge Inspection Program (BIP) Manual includes policies, procedures, 

required forms, reference documents, supplemental guidance and memos to guide inspectors in 

their duties. This document has detailed instructions on bridge inspection procedures and the 

qualifications as well as the certifications of the inspectors to perform the inspections. The 

manual also includes instructions for the structure of the bridge inspection team in Nebraska, 

quality assurance procedure for inspection, and bridge data to be submitted and reported to 

FHWA and NDOR. Since 2014, NDOR has moved to the Element Inspection method for rating 

their bridges because it provides “a more detailed picture of the health of their bridges than the 

broad NBI condition.”  

NDOR inspectors fill out a “Field Inspection Form” for each inspected bridge. The form 

requires general information about the bridge, including the structure number, location, year 

built, year reconstructed, and the geolocation. The traditional SI&A rating for the deck, 

superstructure, substructure, and culvert are also assessed and reported to the NBI database. 

Additionally, element level inspection data is recorded for various deterioration mechanisms and 

element types.  

The form typically reports element level data as the portion of each element type at a 

bridge (e.g., total length of steel girders) categorized in each condition state (Good, Fair, Poor, 

Severe) for each applicable deterioration mechanism (e.g., corrosion). Locations of deteriorated 

conditions and measurements of section loss or remaining section are not generally available, 

unless deterioration is particularly severe. However, it is common practice (particularly for state 

bridges inspected by NDOR personnel) to take pictures during the inspection.  
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3.2 Bridge Surveying and Describing and Profiling the Deterioration 

3.2.1 Deterioration Patterns  

A review of the literature, together with pictures available from NDOR inspections, 

indicated that two deterioration profiles were appropriate for this study. One of the predominant 

corrosion patterns for simple span bridges is corrosion in the bottom flange and the bottom 

region of the web, with deterioration extending the full girder depth at supports below deck 

joints. Figure 3.1 shows examples of deterioration near the support, in contrast to Figure 3.2, 

which shows deterioration concentrated along the bottom flange and the bottom portion of the 

web. 

For the second prevalent corrosion pattern, the full height of the girder had experienced 

corrosion at particular locations along the span. This type of corrosion, typically corresponds to 

deck cracking, allowing the leakage of electrolytes (water and deicing salt) similar to support 

conditions. Examples of this deterioration profile are provided in Figure 3.3 and Figure 3.4.  

 

 
 

Figure 3.1 Deterioration pattern at girder ends 



25 

 

 
 

Figure 3.2 Bottom flange deterioration along the girder 

 

 
 

Figure 3.3 Deterioration pattern where entire section of girder is deteriorated 
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Figure 3.4 Entire girder section deteriorated below the cracked slab 
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3.2.2 Girder Deterioration Profile Models  

Nowak noted that steel girder corrosion from traffic spray accumulation commonly 

occurs along the top surface of girder bottom flanges and the bottom portion of the web. As 

noted previously, corrosion often extends over the entire web height near the support due to deck 

leakage (Kayser & Nowak, 1989a). At the mid-span, corrosion of the web reaches approximately 

¼ of the web height. Figure 3.5 shows the corrosion pattern across a girder cross-section as 

developed by Czarnecki and Nowak (Czarnecki & Nowak, 2008), and a typical corrosion pattern 

found at steel girder bridges is shown in Figure 3.6. 

 

 
 

Figure 3.5 Corrosion of a steel girder bridge 
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Figure 3.6 Typical corrosion pattern in a steel girder 

 

Kayser and Nowak modeled deterioration along the entire web and the bottom flange at 

girder ends. Elsewhere along the span, corrosion was assumed at the bottom 1/4th of the web and 

the bottom flange. In this deterioration profile, the height of the deteriorated web decreases until 

it reaches 1/4th of the web height at 1/10th of the length and the deteriorated web height remains 

constant throughout the rest of the span. This type of profile is typically observed for bridges 

with decks in Good condition without leakage. Figure 3.7 and Figure 3.8 shows the deterioration 

profile in elevation and deteriorated cross-sections, respectively. This type of deterioration will 

be referred to as “girder deterioration profile 1,” or “GP1,” in this report. 

 

 
 

Figure 3.7 Deterioration profile “GP1” 
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Figure 3.8 Section deterioration “GP 1” 

 

The second predominant corrosion pattern exhibits corrosion along the full height of the 

section. In this deterioration profile, the entire girder depth is deteriorated, including both the 

flanges and the web. This profile is assumed to occur randomly along the span, caused by the 

leakage of deicing salt and water through damaged or cracked deck. Figure 3.9 shows this type 

of deterioration profile and the section profile. This type of deterioration will be referred to as 

“girder deterioration profile 2,” or “GP2,” in this report.  

 

 
 

Figure 3.9 Entire web deteriorated along the span “GP 2” 
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Chapter 4:  Reliability Analysis 

Reliability analyses were performed to determine condition factors, ϕc, using the 

Rackwitz-Fiessler method. Rackwitz-Fiessler is used for this study because it can account for 

non-normal random variables. It uses the “equivalent normal” value for each non-normal random 

variable. The mean, standard deviation, and probability distribution of all random parameters 

involved in the limit function are required. The mean and standard deviation of non-normally 

distributed random variables are converted to equivalent normal mean and standard deviation 

values. These equivalent values are used in the analysis on the failure surface described by g = 0, 

where g is a limit state function.  

Reliability analysis is performed using the load rating equation shown below in Eq. (2) to 

describe the limit state surface. This equation contains the capacity, dead load from a wearing 

surface, dead load from components, any other permanent loads and a live load with impact. For 

this study, the wearing surface and permanent loads on the bridges were neglected. The dead 

load includes the slab and girder self-weight. The live load in the analysis is HL 93 truck, which 

includes an HS 20 truck load and a lane-load of 0.64 kip/ft. 

The process of performing reliability analysis starts with the rating equation, along with 

defining the variables and their parameters.  

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (𝐿𝐿𝐿𝐿) =
ϕϕsϕC𝑅𝑅𝑛𝑛 − γ𝐷𝐷𝐷𝐷(𝐷𝐷𝐷𝐷) − γ𝐷𝐷𝐷𝐷(𝐷𝐷𝐷𝐷) ± γ𝑃𝑃(𝑃𝑃)

γ𝐿𝐿𝐿𝐿(𝐿𝐿𝐿𝐿 + 𝐼𝐼𝐼𝐼)
 

(2) 

Rearranging into a limit state format (i.e., g = capacity – demand): 

 

 

𝑔𝑔 =  ϕϕsϕC𝑅𝑅𝑛𝑛 − γ𝐷𝐷𝐷𝐷(𝐷𝐷𝐷𝐷) − γ𝐷𝐷𝐷𝐷(𝐷𝐷𝐷𝐷) ± γ𝑃𝑃(𝑃𝑃) − (𝐿𝐿𝐿𝐿) ∗ γ𝐿𝐿𝐿𝐿(𝐿𝐿𝐿𝐿 + 𝐼𝐼𝐼𝐼) (3) 

Where, 
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ϕ,  ϕs,𝑎𝑎𝑎𝑎𝑎𝑎 ϕC =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝑅𝑅𝑛𝑛 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

γ𝐷𝐷𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎 γ𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐷𝐷𝐷𝐷 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

γ𝑃𝑃 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

γ𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

For this study, the following assumptions apply in Eq. (3): 

o No permanent loads are considered (P=0) 

o Wearing surface is neglected (DW =0) 

The following parameters were selected to maintain consistency with the current LRFR 

method in the MBE: 

o ϕ = 1.0 for flexure. 

o ϕs = 1 for multi-girder bridges. 

o IM (impact factor) = 1.33  

o LL is calculated for an HL 93 truck for Inventory rating with a COV of 0.18 (Moses, 

2001). 

Additionally, the following modifications were introduced:  

o LR and γ𝐿𝐿𝐿𝐿were combined into a Γ𝐿𝐿𝐿𝐿 term  

o ϕ* ϕs *ϕc were combined into a Γ𝑅𝑅𝑅𝑅 term 
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The modified governing equation for the failure surface is: 

 𝑔𝑔 = Γ𝑅𝑅𝑅𝑅 ∗ 𝑅𝑅𝑛𝑛 − [Γ𝑙𝑙𝑙𝑙(𝐿𝐿𝐿𝐿 + 𝐼𝐼𝐼𝐼) + γ𝐷𝐷𝐷𝐷(𝐷𝐷𝐷𝐷)] (4) 

Where, 

Γ𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿 ∗ 𝛾𝛾𝐿𝐿𝐿𝐿 

Γ𝑅𝑅𝑅𝑅 =  ϕϕsϕC 

𝑅𝑅𝑛𝑛 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

 

Structural capacity is taken as the plastic moment capacity of the remaining sound 

section, and it is modeled as a normally distributed random variable. Dead load is the moment 

caused by an 8-inch slab and the self-weight of the girder. This study assumed that the variation 

in dead load did not change with the decreasing condition of the girder (Kayser & Nowak, 

1989b). Consequently, dead load is modeled as a deterministic parameter, with uncertainty 

accounted for in the typical LRFR dead load factor. This assumption was applied to avoid 

requiring changes to dead load factors from those commonly used in LRFR. Live load is the 

moment caused by the HL93 truck, and has a lognormal distribution with a COV of 0.18 and a 

bias of 1.00, which is consistent with the AASHTO LRFD design specification (Moses, 2001).  

Design points for the moment capacity and the live load are determined during the 

reliability analyses to correspond to a target reliability. ΓLL and ΓRN are the ratios between the 

design point and mean values for live load and capacity, respectively. LR and ϕc can then be 

extracted from ΓLL and ΓRN using known γLL, ϕ, and ϕs. 

All the load parameters are specific to a bridge. The mean load on the bridge depends on 

the length and the configuration of the bridge. They are independent of the condition state of the 

girder. Live load, impact, and dead load are constant for all condition states, as they are 
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independent of the deterioration in the girder. The live load along the span is equal to the 

moment envelope generated by an HL93 truck. Girder line analysis uses the girder distribution 

factor to find the appropriate proportion of the live load distributed to the girder. The dead load 

along the span is the moment generated by a uniformly distributed load equal to the weight of the 

concrete slab and the girder. 

Capacity is dependent on the remaining sound material of the girder, and so changes with 

deterioration. The mean and standard deviation for capacity in each condition state is 

probabilistically characterized as discussed in the following chapters. The bias for capacity is 

taken as 1.00 because adjustments from mean to nominal capacity related to typical fabrication, 

material, and professional biases are assumed to be embedded in LRFD together with the ϕ 

factor. Girder plastic moment capacity is the governing limit state, and is calculated according to 

AASHTO LRFD for a composite, compact section. 

The limit state function is satisfied by g ≥ 0, where g is defined in Eq. (4). The procedure 

to conduct reliability analyses with the Rackwitz-Fiessler method is outlined below. 

1. An initial design point for capacity is set to the mean capacity of the girder. 

2. The live load corresponding to the capacity on the limit state surface can be calculated 

by solving the equation below. 

 

 𝐿𝐿𝐿𝐿 = 𝑅𝑅𝑛𝑛 −  γ𝐷𝐷𝐷𝐷(𝐷𝐷𝐷𝐷) (5) 
 
 

  

3. Equivalent normal parameters are determined for all non-normal parameters. The live 

load has a lognormal distribution with a COV of 0.18 and a bias of 1.00 (Moses, 

2001), and the capacity, which is binned together for each condition state (as discussed 

later in this report), is assumed to be normally distributed. 
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4. The mean and standard deviation of the normally distributed variables are used to find 

the column vector of sensitivities, {G}, containing the partial derivatives of g with 

respect to the reduced variables, in this case, LL and Rn. 

 

{𝐺𝐺} = �
−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕

 

(6) 

 

5. The column vector {α} is then determined using {G}.  

 

 
𝛼𝛼 =

[𝜌𝜌]{𝐺𝐺}
�{𝐺𝐺}𝑇𝑇[𝜌𝜌]{𝐺𝐺}

 
(7) 

 

The coefficient of correlation [ρ] is a 2 X 2 identity matrix for a reliability analysis with 

two uncorrelated variables (applied live load and flexural capacity).  

6. A new design point in reduced variates for n-1 variables (where, for this study, n = 2, 

so n-1 = 1) is determined using:  

 

 𝑧𝑧𝑅𝑅𝑅𝑅∗ = 𝛼𝛼𝑅𝑅𝑅𝑅𝛽𝛽𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (8) 

7. Corresponding design point values (𝑥𝑥𝑅𝑅𝑅𝑅∗ ) in original coordinates for the n-1 values in 

step 6 are determined from: 

 

 𝑥𝑥𝑅𝑅𝑅𝑅∗ = 𝜇𝜇𝑋𝑋𝑅𝑅𝑅𝑅
𝑒𝑒 + 𝑧𝑧𝑅𝑅𝑅𝑅∗ 𝜎𝜎𝑥𝑥𝑅𝑅𝑅𝑅

𝑒𝑒  (9) 
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8. Determine the values of the live load using the equation g = 0 and recalibrate the mean 

of capacity (𝜇𝜇𝑥𝑥𝑅𝑅𝑅𝑅) using the following equation. 

 
𝜇𝜇𝑥𝑥𝑅𝑅𝑅𝑅 =

𝑥𝑥𝑅𝑅𝑅𝑅∗

1 + 𝛼𝛼𝑅𝑅𝑅𝑅𝛽𝛽𝑉𝑉𝑋𝑋𝑅𝑅𝑅𝑅
 

(10) 

   

9. Repeat steps 3 through 8 until {α} converges 

10. Once convergence is achieved, calculate the design factors (𝛾𝛾𝑖𝑖) using  

 

 
𝛾𝛾𝑖𝑖 =

𝑥𝑥𝑖𝑖∗

𝜇𝜇𝑥𝑥𝑖𝑖
 

(11) 

   

The terms used in the foregoing procedure reflect those presented in Nowak and Collins 

(2013). Referring back to the original limit state function developed for this study, γLL in Eq. 

(11) corresponds to ΓLL in Eq. (4) and γRN in Eq. (11) corresponds to ΓRN in Eq. (4). To find 

Load Rating (LR):  

 𝐿𝐿𝐿𝐿 =
Γ𝐿𝐿𝐿𝐿
γ𝐿𝐿𝐿𝐿

 (12) 

 

Note that the γLL used in Eq. (12) is taken from LRFR. It is not the value obtained in Eq. 

(11). Similarly, the condition factor, ϕc, is found from:  
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 ϕ𝐶𝐶 =
Γ𝑅𝑅𝑅𝑅
ϕϕ𝑠𝑠

 (13) 

 

This process is used multiple times to generate ϕc values in this study (Nowak S. & 

Collins R., 2013). All the uncertainties that are accounted for by the ϕc are discussed in detail in 

Chapter 5: Uncertainty Contributions to Condition Factors.  
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Chapter 5:  Uncertainty Contributions to Condition Factors 

The factor ϕc accounts for uncertainties associated with the current deteriorated condition 

of the girder. These uncertainties include the change in the variation of measurement within 

sections (section 5.1 Uncertainties in Section Deterioration), possible future corrosion (section 

5.2 Future Corrosion), the severity of section loss associated with condition states (section 5.3 

Uncertainty due to Range of Section Loss in each Condition State) and the location of section 

loss along the span (section 5.4 Uncertainty in the Location of the Deterioration). There are three 

girder condition states considered in this study (Good, Fair, Poor), and ranges of the severities 

(percentage section loss) are combined within each condition state. Therefore, a new set of 

uncertainties associated with the exact percentage loss in the girder emerges. This uncertainty is 

also accounted for by the ϕc.  

5.1 Uncertainties in Section Deterioration 

Corrosion along a deteriorated section is non-uniform and causes variation in flange and 

web thicknesses, increasing uncertainty in the capacity of the girder. A relationship between 

measured percentage loss and the variation in actual thickness across a cross-section should be 

included in the reliability analysis when determining ϕc. No prior studies were found 

documenting the variation in section across a cross-section. Therefore, measurements were taken 

in the field for various girders to estimate this uncertainty. 

5.1.2 Measurement in the Field 

NDOR provided a list of 60 steel girder bridges near Lincoln, Nebraska, along with 

recent inspection reports. The reports helped identify the worst condition state present in the 

girder. The sample included a diverse range of bridges with all four condition states present. 

The bridges were categorized into four groups depending on the worst condition state 

present in the bridge. Out of the 60 bridges, 4 bridges had condition state 4 as their worst 
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condition state in the inspection report, 28 bridges had condition state 3, 24 bridges had 

condition state 2, and 4 bridges had condition state 1. Table 5.1 lists 9 bridges that were visited 

and at which measurements were taken. 

 

Table 5-1 List of bridges visited, their condition state and max % loss summary 

 
 

Measurements were taken in three different preparation states: deteriorated, brushed and 

ground. A location along the bottom flange was selected (see Figure 5.1) for each measured 

girder, and 10 sets of measurements were taken at each side of the flange (see Figure 5.2 and 

Figure 5.3). Measurements were taken within a 1 inch strip measured along the girder span at 

each selected location.  

The measurements were repeated for each preparation state. First, measurements were 

taken without any modification to the surface except for removal of loose debris by hand. The 

location was cleaned using a steel brush, and measurements were retaken. Lastly, the location 

was cleaned with a power grinder, and measurements were taken again. The same girder was 

also measured at an undeteriorated section along the span to establish a baseline for comparison 

at the deteriorated section. 

Structure Number Worst CS classification Max % loss 
S006 28494 CS 3 3 % 
S033 01026 CS 3 3 % 
S006 30574 CS 1 1 % 
S006 28424 CS 3 3 % 

S077 06205L CS 1 1 % 
S077 06205R CS 3 1 % 
S006 32007 CS 3 14 % 
S136 14969 CS 3 8 % 
S015 03097 CS 3 8 % 
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Figure 5.1 Section deterioration 

 

 
 

Figure 5.2 Variation of the flange thickness along the section 
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Figure 5.3 Sample location of measurement taken along the bottom flange 

 

Mean and variation for percentage loss were calculated using the measurements from the 

undeteriorated section and the three states of measurements along the sections. The MBE 

recommends removing rust with a steel brush. However, grinding was required to reach sound 

material, because the steel brush did not remove all of the rust. ASTM G103 cautions against 

grinding to avoid loss of sound material. Mechanical girding was the only option for removing 

all of the rust from the steel because other procedures, such as chemical or electrolysis 

techniques, which were not feasible in the field. The grinding process was carefully performed to 

minimize removal of sound material. A material that is softer than steel was used for grinding, 

and the girding was stopped soon after sparks appeared.  

All measurements were taken using a deep throat micrometer (see Figure 5.4) because of 

its high precision and the ability to take measurements at multiple locations across a flange with 

varying remaining thickness (calipers can only measure the thickest area of a deteriorated 

flange).  
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Figure 5.4 Wide mouth caliper used for measurement of the flange 

 

Excel was used to record and analyze all measurements. The Excel sheet recorded 

information including the structure number and location of the bridge, the length of each 

condition state, and the total length of the girders. See Figure 5.5 for an example of the 

measurement sheet. The mean, standard deviation, COV, median, quartiles and outlier 

boundaries were calculated in the excel sheet. Any measurement that is beyond the outlier 

boundaries were highlighted to receive attention later during analysis.  

The COV and the mean loss are the two most important parameters. Percentage section 

loss is determined using the mean values of the undeteriorated section and the ground section. 

The difference between the two divided by the mean undeteriorated value is the percentage loss. 

COVs were calculated by dividing standard deviations by mean values. The COV of the ground 

measurement is then linked to the percentage loss for measurement used in reliability analyses. A 

list of all the percentage losses and the corresponding COVs are shown below in Table 5.2. 
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Figure 5.5 Example field measurement sheet along with the calculated loss and COV 

 

The COVs and the percentage losses were plotted to examine the relationship between 

the percentage loss and the COV. No clear trend was found. A linear fitting had a poor R2 of 

only 0.65 (see Figure 5.6). A step function approach to assign COVs to percentage losses was 

used, where the larger COV between the COV for the considered section percentage loss and the 
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COV that was assigned to a lower percentage section loss is selected. For example, the COV for 

a 4% loss is 0.028 and the COV for a 5% loss is 0.011; the COV used for a 5% loss is 0.028 

because that is the maximum COV for all values less than or equal to a 5% loss. The solid line 

(red) in Figure 5.6 shows this approach. A summary of the percentage section loss and the 

corresponding COV is shown in Table 5.3. The maximum COV is carried forward constantly for 

section loss greater than the maximum measured (14%). This COV is incorporated in 

uncertainties considered during reliability analyses (see section 6.1.1 Quantifying Uncertainty in 

Approach 1). 

 

 
 

Figure 5.6 Percentage loss VS COV 
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Table 5-2 Summary of % loss and COV of bridges after grinding 

 

 

 

Structure number % loss COV 
S077 06205R 0% 0.01 
S006 28494 1% 0.005 
S033 01026 1% 0.008 
S136 14969 1% 0.003 
S077 06205R 1% 0.008 
S006 30574 1% 0.003 
S006 28494 1% 0.002 
S077 06205L 1% 0.007 
S077 06205R 1% 0.010 
S006 28424 1% 0.005 
S077 06205R 1% 0.004 
S006 28494 2% 0.008 
S006 28494 2% 0.013 
S033 01026 2% 0.013 
S033 01026 2% 0.018 
S006 28424 2% 0.005 
S006 28424 3% 0.009 
S136 14969 3% 0.024 
S 015 03097 3% 0.022 
S006 28424 3% 0.015 
S033 01026 3% 0.009 
S136 14969 4% 0.028 
S 015 03097 4% 0.016 
S 015 03097 5% 0.011 
S 015 03097 6% 0.022 
S136 14969 6% 0.038 
S 015 03097 6% 0.010 
S006 32008 7% 0.019 
S 015 03097 8% 0.023 
S136 14969 8% 0.037 
S006 32007 9% 0.022 
S006 32007 12% 0.028 
S006 32007 14% 0.045 
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Table 5-3 Summary of max COV for all percentage loss 

 
 

5.2 Future Corrosion 

Future deterioration (between inspections) is considered in the reliability analyses using a 

bias (λ). Similar to NCHRP 301, Komp’s corrosion model, including modifications for the 

presence of deicing salts and sheltered condition, is used to account for future corrosion loss. 

This model makes predictions based on the material and the environment. There are three 

environments and two types of steel in Komp’s model, which results in a total of six different 

predictions for future corrosion. These modifications are used to account for the influence of the 

environment and other chemicals, and to predict the corrosion rate of bridges. 

 

Percentage Loss Max COV 
0 0.010 
1 0.010 
2 0.018 
3 0.024 
4 0.028 
5 0.028 
6 0.038 
7 0.038 
8 0.038 
9 0.038 
12 0.038 

≥14 0.045 
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Figure 5.7 Prediction of future corrosion 

 

Komp’s model is an asymptotic function, therefore the rate of corrosion decreases in 

time, but a secant rate of the initial 2 years is conservatively used for the study. Corrosion losses 

for various materials and environments are shown in Figure 5.7. The Komp predictions are 

shown as solid lines, and the secant rates are shown as dashed lines. The projected girder 

moment capacity, accounting for future corrosion, is taken as the nominal value and the capacity 

at the time of inspection is taken as the mean in reliability analyses. The ratio between the mean 

and the nominal is the bias (λ). Bias (λ) for this research is shown in Eq. (14). The proposed ϕc 

values are calibrated for carbon steel in a rural environment because this was the most prevalent 

case in Nebraska. Other environments and type of steel can be obtained by applying a multiplier 

to the ϕc for carbon steel in rural environments.  

 

 𝜆𝜆 =
𝜇𝜇
𝑑𝑑

=
𝜇𝜇𝑅𝑅𝑅𝑅
𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶

 (14) 

Where,  

𝜇𝜇 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  
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𝑑𝑑 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

𝜇𝜇𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒. ) 

 

Alternate materials and environments can be assigned ϕc values by scaling the value 

obtained for carbon steel in a rural environment. In Eq. (15), the base ϕc that accounts for future 

deterioration of carbon steel in rural environment is calculated using the bias in Eq. (14). Similar 

ϕc for other types of steel and environments can be found (Eq. (16)). Eq. (17) through Eq. (20) 

illustrate that ϕc can be calibrated to alternate materials and environments using multipliers.  

 

 
ϕ𝐶𝐶,𝐶𝐶𝐶𝐶 = 𝜆𝜆

𝑅𝑅∗

𝜇𝜇𝑅𝑅𝑅𝑅
=

𝜇𝜇𝑅𝑅𝑅𝑅
𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶

∗
𝑅𝑅∗

𝜇𝜇𝑅𝑅𝑅𝑅
=

𝑅𝑅∗

𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶
 

(15) 

 Similarly, ϕ𝑐𝑐,𝐹𝐹 = 𝑅𝑅∗

𝜇𝜇𝑅𝑅𝑅𝑅,𝐹𝐹
 (16) 

 
ϕ𝑐𝑐,𝐹𝐹 =

𝑅𝑅∗

𝜇𝜇𝑅𝑅𝑅𝑅,𝐹𝐹
∗
𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶

𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶
 

(17) 

 
ϕ𝑐𝑐,𝐹𝐹 =

𝑅𝑅∗

𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶
∗
𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶

𝜇𝜇𝑅𝑅𝑅𝑅,𝐹𝐹
 

(18) 

 ϕ𝑐𝑐,𝐹𝐹 = ϕ𝐶𝐶,𝐶𝐶𝐶𝐶 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (19) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶

𝜇𝜇𝑅𝑅𝑅𝑅,𝐹𝐹
 (20) 

Where, 
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𝑅𝑅∗ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

𝜇𝜇𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)  

ϕ𝐶𝐶,𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒) 

ϕ𝑐𝑐,𝐹𝐹 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

𝜇𝜇𝑅𝑅𝑅𝑅,𝐹𝐹 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 

𝜇𝜇𝑅𝑅𝑅𝑅,𝑁𝑁 = 𝜇𝜇𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

A two-year estimation is used because inspections are typically performed every two 

years on all bridges. A conservative estimation of loss due to corrosion in two years can be used 

to estimate the maximum loss in section properties. This remaining section is used to calculate 

the capacity of the girder present at the next inspection cycle. 

5.3 Uncertainty due to Range of Section Loss in each Condition State 

Condition states in MBEI are not quantitatively correlated to section loss severity. For 

example, the bridge in Figure 5.8 might be documented in an MBEI-conformant inspection 

report to have 10% CS3, 20% CS2, and 70% CS1. This information provides little insight into 

the percentage loss that should be included in a load rating evaluation. Accordingly, ϕc should be 

calibrated to account for the uncertainty in available capacity for each and all applicable 

condition states. This study examines current inspection processes and proposes a range of 

section loss for each condition state, and an alternative range that would provide consistent 

reliability in load rating with the suggested ϕc values found in the MBE (AASHTO, 2014). 
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Figure 5.8 Bridge with multiple condition states 

 

The variation in percentage loss in each condition state is assumed to be normally 

distributed for simplicity in the analysis. For future research, detailed surveying and 

measurement within each condition state could provide more insight into the distribution within 

each condition state. A range of admissible section loss severities needs to be specified for each 

condition state to quantify respective uncertainties. 

5.3.1 Determining Range of Section Loss within each Condition State 

Condition state, a term used in AASHTO’s Manual for Bridge Element Inspection 

(MBEI), categorizes defects into 4 levels of severity (see Table 5.4), but the descriptions for each 

condition state are vague and subjective. The SI&A rating used in the NBI is used to broadly 

characterize the entire superstructure including all elements above the bearing of the bridge. 
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NDOR’s BRIM includes a range of percentage losses in superstructure condition rating 

descriptions (see Table 5.5).  

The description with percentage loss from the SI&A rating and the corresponding 

equivalent condition state (see Table 3.2) can be used to help choose a range for each condition 

state. Condition state 1 corresponds to “Good or Satisfactory” in the structural condition of a 

member, which has an SI&A superstructure condition rating of 6 or higher. Similarly, condition 

state 2 is “Fair” with an SI&A condition rating 5, condition state 3 is “Poor” with an SI&A 

condition rating of 4, and condition state 4 is “Severe” with an SI&A condition rating of 3 or 

lower. These correlations of MBEI condition states and SI&A superstructure ratings are 

compared to NDOR’s condition rating descriptions in Table 5.6. 
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Table 5-4 Element #107 condition state definitions 

 

 

Defect Condition State 
1 2 3 4 

Good Fair Poor Severe 
Corrosion  None Freckled Rust. Corrosion of 

the steel has initiated 
Section Loss is evident or pact rust 

is present but does not warrant 
structural review 

The condition warrants a 
structural review to determine 

the effect on strength or 
serviceability of the element or 
bridge, OR a structural review 

has been completed and the 
defects impact strength or 

serviceability of the element or 
bridge. 

Cracking  None Cracks that has self-arrested 
or has been arrested with 

effective arrest holes, 
doubling plates, or similar. 

Identified crack that is not arrested 
but does not warrant structural 

review. 

Connection The connection 
is in place and 
functioning as 

intended. 

Loose fasteners or pack rust 
without distortion is present 
but the connection is in place 
and functioning as intended 

Missing bolts, rivets, or fasteners; 
broken welds; or pact rust with 

distortion but does not warrant a 
structural review. 

Distortion None. Distortion not requiring 
mitigation or mitigated 

distortion. 

Distortion that requires mitigation 
that has not been addressed but 

does not warrant structural review. 
Damage Not Applicable. The element has impact 

damage. The specific 
damage caused by the impact 

has been captured in 
Condition State 2 under the 
appropriate material defect 

entry. 

The element has impact damage. 
The specific damage caused by the 

impact has been captured in 
Condition State 3 under the 

appropriate material defect entry. 

The element has impact 
damage. The specific damage 
caused by the impact has been 
captured in Condition State 3 
under the appropriate material 

defect entry. 



 
 
 
 

 

52 

 

Table 5-5 Table C6A.4.2.3-1- from MBE: description of member condition 

 

 

 

 

 

Code Condition  Description 

N 
NOT 

APPLICABLE For example, a culvert. 

9 
EXCELLENT 
CONDITION 

No noticeable or noteworthy deficiencies that affect the 
condition of the structure. 

8 
VERY GOOD 
CONDITION Bent steel or slight misalignment, not requiring repairs. 

7 
GOOD 

CONDITION  Heavy rust in localized areas without any section loss. 

6 
SATISFACTORY 

CONDITION 
Initial section loss (heavy rust) in localized areas of 
structural steel members in non-critical stress areas 

5 
FAIR 

CONDITION  

Substantial but not critical collision damage to structural 
support elements, steel girders, trusses, etc. Initial section 

loss (heavy rust) in localized areas of structural steel 
members in critical stress areas. 

4 
POOR 

CONDITION  

Critical collision damage sustained to structural support 
elements. Precautionary measures such as traffic 
restrictions or temporary shoring may be needed. 

Significant section loss (heavy rust) of structural steel 
girder in critical stress areas. (More than 30% section loss). 

3 
SERIOUS 

CONDITION 

Disintegration of or damage condition of a structural 
member which requires traffic restriction or shoring. 

Severe section loss (heavy rust) or structural steel member 
in critical stress areas requiring immediate repairs. (More 

than 50% loss of section). 

2* 
CRITICAL 

CONDITION 
The need for repair or rehabilitation is urgent. Facility must 

be closed until the indicated repair is complete. 

1* 

IMMINENT 
FAILURE 

CONDITION 
Facility is closed. Study should determine the feasibility for 

repair. 

0* 
FAILED 

CONDITION Facility is closed and is beyond repair. 
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Table 5-6 Condition states with corresponding condition ratings and descriptions 

 
 

NDOR’s description for condition rating (see Table 5.5) has a Poor condition with more 

than 30% section loss. Similarly, the Severe condition is defined as having more than 50% loss 

of section, which can be inferred to limit condition state 3’s section losses between 30% to 50%. 

The Fair condition does not have percentages bounds. A 10% lower limit for the Fair condition 

was chosen to keep the range of section loss equal to condition state 3. Condition state 2 was 

then assumed to range from 10% to 30%, and condition state 1 was assumed to range between 0 

to 10%. Although having a 10% section loss is contrary to the description in the MBEI, it is 

closer to the Good condition description rating because the Good condition can have “initial 

section loss in localized areas of structural steel members in non-critical stress areas.” This 10% 

is an upper limit and a conservative assumption. The MBE does not have a condition rating 

associated with condition state 4. An upper limit of 80% was arbitrarily selected. The range of 

section loss for each condition state is shown in Table 5.7. 

 

 

Condition 
State 

Condition of 
Member 

Condition 
Rating  

NDOR’s Description 

1 Good  6 or higher Initial section loss in localized areas of structural 
steel members in non-critical stress areas. 

2 Fair 5 Initial section loss (heavy rust) in localized areas 
of structural steel members in critical stress areas. 

3 Poor 4  Significant section loss (heavy rust) of structural 
steel girder in critical stress areas. (More than 30% 

section loss). 
4 Severe 3 or lower Severe section loss (heavy rust) or structural steel 

member in critical stress areas requiring 
immediate repairs. (More than 50% loss of 

section). 
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Table 5-7 Condition state and a range of section loss in each condition state 

 
 

Preliminary reliability analyses were performed to determine an appropriate ϕc for each 

of these ranges of section loss. The ϕc for condition state 1 would be approximately 0.96; the ϕc 

for condition state 2 would be about 0.82, and the ϕc for condition state 3 would be around 0.68. 

These penalties seem inappropriately severe. For example, the ϕc value in MBE for a Fair 

condition element is proposed to be 0.95, compared the 0.82 obtained from preliminary analyses. 

In addition to the severe penalty, this approach is not consistent with MBEI inspection 

procedures. A new range consistent with Element Level Inspection was determined, as discussed 

in the following section. 

5.3.2 Range Consistent with NDOR’s Current Inspection Procedure 

A range based on NDOR’s current element inspection description for condition states, 

using the description in Table 5.4 Element #107 condition state definitions, is proposed in this 

section. Condition state 1 has no rust, indicating that the percentage loss for condition state 1 

must be 0%. Condition state 2 is described as having some freckled rust with no measurable 

section loss. A maximum loss of 1% was selected based on this description. Condition state 3 is 

defined as having evident section loss. An arbitrary range between 1% to 50% section loss is 

assumed for condition state 3. Condition state 4, by definition, requires a structural review by an 

engineer. The lower limit of 50% was set for condition state 4 to correspond to the SI&A rating 

of 3 (serious condition, see Figure 5.5). The ranges are summarized in Table 5.8. 

Condition State Range of section loss 
1 <10% 
2 10-30% 
3 30-50% 
4 50-80% 
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Table 5-8 Range of condition state consistent with Element Inspection 

 
 

Reliability analyses using the section loss ranges inferred from NDOR Element 

Inspection descriptions produced ϕc values inconsistent with those found in the MBE. For 

example, a girder with freckled rust is categorized as condition state 2, but MBE suggests a 

penalization of 5% (ϕc =0.95) to the girder capacity. “Freckled rust” was interpreted as 

negligible section loss, so the resulting condition factor from analysis was approximately 1.0 

(rather than 0.95). All girders with measurable section loss are categorized into condition state 3. 

The wide range of section loss produced ϕc values significantly more severe for condition state 3 

than proposed in MBE (ϕc = 0.85). Preliminary analyses for ϕc resulted in the values presented 

in Table 5.9 for the two girder deterioration profiles (GP).  

 

Table 5-9 ϕc for two deterioration profiles using deterioration severity inferred from 

NDOR Element Inspection descriptions 

 CS1 CS2 CS3 
GP1 1.00 1.00  0.70 
GP2 1.00 1.00  0.40 

 
 

5.3.3 Calibrating the Range of Condition State to MBE Values 

An alternative set of section loss ranges was calibrated to match the ϕc values suggested 

in the MBE, providing an alternative set of inspection guidelines for consideration by NDOR. 

Condition State Range of Section Loss 
1 0% 
2 0-1% 
3 1-50% 
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The bounds for section loss ranges were determined by trial and error for each condition state, 

starting from condition state 1 and progressing to more severely deteriorated conditions. All 

condition states were assumed mutually exclusive (i.e., no section loss can occur in more than 

one condition state). The reliability analyses presumed that the entire bridge exhibited uniform 

deterioration (i.e., no variation along the span). Reliability analyses implemented the Rackwitz-

Fiessler method, as described previously. Capacity uncertainty a variation across a section and 

from the consideration of a range of section loss severities for the condition state under 

consideration. Future corrosion was reflected through bias in the reliability analyses. 

Ranges of section loss were identified for each of the two deterioration profiles 

considered in this study, considering spans from 50 to 120 ft, as shown in Table 5.10. A range of 

section loss between 0 – 1% resulted in a ϕc of 0.99 for GP1, but only 0% loss was admissible 

for GP2 and would correspond to a ϕc of 0.98 (less than 1 to reflect potential future loss). 

Similarly, analyses indicated upper bounds for each span, deterioration profile (GP), and more 

severely deteriorated condition state (2 and 3).  

The minimum of the upper bounds was selected as the “Final Range”, representing 

bounds on deterioration severity that will produce ϕc values no lower than those found in the 

MBE. These ranges of section loss are summarized for both deterioration profiles in Table 5.11. 

These ranges for each condition state were selected for use in this research. 
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Table 5-10 Range of section loss for condition state and their corresponding ϕc 

 
  

Table 5-11 Range of section loss for condition states 

 

 GP 1  
Length Shape CS 1  CS 2  CS 3  ϕc 1 ϕc 2 ϕc 3 

50 W30X99 1% 7% 31% 0.99 0.94 0.85 
60 W33X118 1% 7% 32% 0.99 0.94 0.85 
70 W36X135 1% 7% 35% 0.99 0.94 0.85 
80 W40X167 1% 7% 35% 0.99 0.94 0.85 
90 W36X194 1% 7% 36% 0.99 0.95 0.85 
100 W40X215 1% 7% 35% 0.99 0.95 0.85 
110 W44X230 1% 7% 35% 0.99 0.95 0.85 
120 W44X262 1% 7% 35% 0.99 0.95 0.85 

Final Range 1% 7% 31% 
   

GP 2  
Length Shape CS 1  CS 2  CS 3 ϕc 1 ϕc 2 ϕc 3 

50 W30X99 0% 5% 20% 0.98 0.95 0.84 
60 W30X116 0% 5% 20% 0.98 0.95 0.85 
70 W33X130 0% 5% 20% 0.98 0.95 0.85 
80 W36X150 0% 5% 21% 0.98 0.95 0.85 
90 W36X182 0% 7% 25% 0.99 0.95 0.85 
100 W33X201 0% 7% 25% 0.99 0.95 0.85 
110 W40X211 0% 5% 22% 0.99 0.95 0.85 
120 W40X249 0% 10% 30% 0.99 0.95 0.85  

Final Range  0% 5% 20% 
   

Condition state Range of section loss 

G
P 

1 

1 0-1% 
2 1-7% 
3 7-31% 
4 31-80% 

G
P 

2 

1 0% 
2 0-5% 
3 5-20% 
4 20-80% 
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5.4 Uncertainty in the Location of the Deterioration 

5.4.1 Introduction 

Load rating is a function of the structural demand induced by the load, which varies along 

the span. The critical load rating section for a new girder is near mid-span because the flexural 

demand by the load is maximum at the mid-span, and the capacity of a non-deteriorated girder is 

uniform throughout the span. Varying levels of section loss along the span results in non-uniform 

capacity, which could shift the critical load rating location.  

For example, a hypothetical girder with a span length of 50 ft could have a section loss 

along the span as shown in Figure 5.9. The section loss of 50% at 12.5 ft (1/4 point of span) is 

the maximum loss present in the girder. Section loss for the hypothetical girder is minimum at 

the mid-span, at 20%. Load rating of the 50 ft W30X99 girder for an HL 93 truck is plotted in 

Figure 5.10. The load rating at the mid-span is 1.041, and the load rating at the location of 

maximum deterioration is 1.034. The critical load rating value of 0.9568, is located at 18.5 ft. 

along the span.  
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Figure 5.9 Example section loss profile along the span 

 

 

 
 

Figure 5.10 Load rating along the span for the section loss shown in Figure 5.9 
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5.4.2 Approaches to Determine ϕc Depending on Inspection Information 

The critical load rating for the hypothetical bridge in the previous section can only be 

identified if inspection data provides detail similar to that shown in Figure 5.9. This research 

recognized that available inspection data varied across the inventory, and so four Approaches are 

proposed:  

• only the worst condition state in the girder is known (Approach 1), 

• all condition states present in the girder and the corresponding total length of girder 

segments classified in each condition state are known (Approach 2), 

• all condition states present in the girder and the corresponding length of girder segments 

classified in each condition state along with the location is known (Approach 3), and  

• detailed, exact deterioration profile along the span is known (Special Approach), similar 

to Figure 5.9. 

The four Approaches are influenced by uncertainties differently, and therefore each must 

address uncertainties uniquely. Uncertainties for each approach were characterized and included 

in the reliability analyses as appropriate (refer to the following chapter for algorithmic details). 

Guidance is recommended for implementing ϕc’s, based on the available inspection data and the 

corresponding appropriate approach. 

For Approach 1, the only information known is the worst condition state in the girder. 

The uncertainties in this approach include the represented proportions of each condition state, the 

locations of condition states along spans, the severity of section loss (% loss) within each 

condition state, the variation of loss across the section, and the loss due to corrosion until the 

next inspection. 
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In Approach 2, the represented proportions (of total girder length) are known for each 

condition state. The uncertainties in this approach include the location of each condition state 

along the span, the severity of section loss (% loss) within each condition state, the variation of 

the loss across the section and the loss due to corrosion until the next inspection cycle. 

In Approach 3, the represented proportions (of total girder length) and the locations of 

condition states along spans are known. The uncertainties in this approach include severity of 

section loss (% loss) within each condition state, the variation of loss across the section and loss 

due to corrosion until the next inspection. 

The three common uncertainties on all of the approaches are severity of section loss (% 

loss) within each condition state, the variation of loss across the section, and projected future 

corrosion loss until the next inspection. Unknown exact % loss is addressed using a mean and 

standard deviation of capacity for all % loss integer increment cases in the condition state under 

consideration. For example, CS2 has a range between 1% and 5% loss; capacity mean and 

standard deviation within that range was calculated using Eqn. (21) and (22) respectively.  

 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =

∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝑛𝑛
, 

(21) 

 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  ��

∑((𝑥𝑥 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)2)
𝑛𝑛 − 1

� 
(22) 

Where, 

𝑥𝑥𝑖𝑖 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑖𝑖𝑡𝑡ℎ % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑛𝑛 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 
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The calculated mean and standard deviation of the moment capacities were used in 

reliability analyses as a normally distributed random variable. The variation of deterioration 

across the section is accounted for as discussed in the following chapter, by combining 

dispersion measures using the square root of the sum of the squares (SRSS). The uncertainty due 

to possible future corrosion is likewise discussed in the following chapter. 

The distribution of condition states (CS) along girder spans is treated by discretizing the 

girder length into 5% segments, as shown in Figure 5.11. Each line in the table below the beam 

represents a scenario when the total proportions of condition states are known along the span. 

For example, the next to last line (immediately above scenario 231) could be documented during 

an inspection as having 25% CS1 (5 green blocks of 5% each in the figure), 55% CS2 (11 yellow 

blocks), and 20% CS3 (4 red blocks). Alternatively, the report may only indicate that the bridge 

is in Poor condition (CS3), without providing insight into whether 5% or 100% of the bridge 

qualifies for this condition state. 

The scenarios can be broadly characterized into CS groups when only the worst condition 

state is known (i.e., when Approach 1 must be used). The groupings are summarized in Figure 

5.12. There are 3 CS groups: CS3 group includes all the scenarios with condition state 3, CS2 

contains all the scenarios with condition state 2 but no condition state 3, and CS1 has the single 

scenario where the entire girder is in condition state 1. 



 
 
 
 

 

63 

 

 
 

Figure 5.11 Example scenarios for condition state distributions along the span 

 

 
 

Figure 5.12 Flowchart to categorize CS groups for Approach 1  

 
If the inspection data did not include pictures or any other more detailed information 

than, for example, 25% CS1, 55% CS2, and 20% CS3, then Approach 2 would be appropriate. 
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The CS3 blocks could be anywhere along the span (not necessarily all located at the left end, as 

shown). The possible capacity should reflect that any of CS1, CS2, or CS3 could be present at 

the critical section near midspan.  

The simplest example of this consideration is scenario 2: 5% CS2, 95% CS1. If only the 

CS proportions are known, then Approach 2 must consider that the CS 2 segment can be 

anywhere along the span, as shown in Figure 5.13. Approach 3 would be appropriate if 

inspection data is available to identify which of the particular “Possibilities” in Figure 5.13 is 

representative of the real bridge. The value for ϕc can then be selected as a higher or lower value 

to reflect the relative uncertainty incorporated in Approaches 2 and 3, respectively. 

 

 
 

Figure 5.13 Possible location of condition state 2 for scenario 2 
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If the only inspection information available indicates that the worst condition state is CS3 

(recalling the previous example with 25% CS1, 55% CS2, 20% CS3), then the bridge could 

potentially correspond to any one of the 231 scenarios, except the first lines containing only CS1 

and CS2. Additionally, each scenario would need to consider all possible realizations for the 

potential locations of each CS (similar to Approach 2 mentioned above, but also considering 

other CS proportions, such as 20% CS1/50% CS2/30% CS3, etc.). 
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Chapter 6:  Condition Factor Calculation and Implementation 

Selection of condition factors, ϕc, should be consistent with the details available from 

inspections. The four proposed approaches reflect the applicable sources of uncertainty pertinent 

to each, corresponding to the availability of details from inspections. The approaches described 

in this chapter incorporate uncertainties identified in the previous chapter, including the 

representative proportions of each condition state, the locations of condition states along spans, 

the severity of section loss (% loss) within each condition state, the variation of loss across a 

section, and the loss due to corrosion in the interim to the next inspection.  

Reliability analyses incorporate realizations of potential scenarios (CS at critical section 

and exact % loss) to quantify expected values (means) and dispersions (standard deviations) for 

deteriorated flexural capacity at the critical girder section near midspan for a non-deteriorated 

girder. Individual calculations were performed to assess girder capacity at integer increments of 

admissible % loss for each CS. The formulation to quantify uncertainty becomes simpler as 

sources of uncertainty diminish from Approach 1 to Approach 3. 

6.1 Approach 1 

Approach 1 applies when only the worst condition state in the girders is known. In this 

approach, simulation of all the possible scenarios (i.e. proportions and locations of condition 

states) are further categorized into one of the three condition state (CS) groups (refer to Figure 

5.12).  
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6.1.1 Quantifying Uncertainty in Approach 1 

In Approach 1, ϕc needs to account for the uncertainties due to variation in the amount of 

corrosion across a section, lack of exact percentage loss within a condition state, unknown 

location of deterioration and lack of knowledge of the portion of girder in each condition state. 

The combined uncertainty due to variation in corrosion loss across a section, lack of exact 

percentage loss in a CS, unknown deterioration location, and unknown proportion of girder total 

length in each CS, was evaluated using Eq.(25), Eq. (28), and Eq. (31), for CS1, CS2 and CS3 

groups, respectively. In Eq. (25) and Eq. (26), the expected capacity (E(CS1)) was calculated 

using Eq. (23), i.e., by taking the arithmetic average of girder moment capacities, xi, at each 1% 

loss increment, i, within the CS1 group.  

Eq. (26) produces the expected capacity for steel girder bridges with CS2 but without 

CS3 (E(CS2)). Likewise, Eq. (29) produces the expected capacity with CS3 (E(CS3)). The 

expected values were calculated using a weighted average of deteriorated moment capacities, 

weighted proportionately (a, b, and c) to the total girder length associated with condition states 1, 

2, and 3. These expected capacities were then used in Eq. (27) and Eq. (30), respectively, to 

calculate standard deviations within each CS group. The calculated average standard deviation is 

then increased to account for deterioration variation across a section using an SRSS method (i.e., 

assuming statistically independent normal variables) as shown in Eq. (28) and (31). The 

calculations provide representative probabilistic parameters to characterize mean and standard 

deviation of capacity for each condition state group (CS1, CS2, and CS3) accounting for 

combined uncertainties in Approach 1. 
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For CS 1  

 
𝐸𝐸(𝐶𝐶𝐶𝐶1) =

∑ 𝑥𝑥𝑖𝑖𝑚𝑚
𝑖𝑖=1

𝑚𝑚
  

(23) 

 

𝑆𝑆𝑆𝑆(1) =  ��
∑ ��𝑥𝑥𝑖𝑖 − 𝐸𝐸(𝐶𝐶𝐶𝐶1)�2�𝑚𝑚
𝑖𝑖=1

𝑚𝑚 − 1 � 

(24) 

 
𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶1) =  ��𝑆𝑆𝑆𝑆(1)2 + (𝐸𝐸(𝐶𝐶𝐶𝐶1) ∗ 𝐶𝐶𝐶𝐶𝑉𝑉max_1 )^2� 

(25) 

   

Where, 

𝐸𝐸(𝐶𝐶𝐶𝐶1) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶1 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  

𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶1) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶 1 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

𝑥𝑥𝑖𝑖 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑡𝑡ℎ % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 

𝑚𝑚 = N𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1  

𝐶𝐶𝐶𝐶𝑉𝑉max_1 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1  
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For CS2 

 
𝐸𝐸(𝐶𝐶𝐶𝐶2)  = �

∑ 𝑎𝑎𝑠𝑠 ∗ 𝑥𝑥𝑖𝑖,1𝑚𝑚
𝑖𝑖=1 𝑚𝑚� +

∑ 𝑏𝑏𝑠𝑠 ∗ 𝑥𝑥𝑗𝑗,2
𝑛𝑛
𝑗𝑗=1

𝑛𝑛�
20

20

𝑠𝑠=1

 (26) 

 

𝑆𝑆𝑆𝑆(2) =  �

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛
��

∑ 𝑎𝑎𝑠𝑠 ∗ �𝑥𝑥𝑖𝑖,1 − 𝐸𝐸(𝐶𝐶𝐶𝐶2)�
2

𝑚𝑚
𝑖𝑖=1

+∑ 𝑏𝑏𝑠𝑠 ∗ �𝑥𝑥𝑗𝑗,2 − 𝐸𝐸(𝐶𝐶𝐶𝐶2)�
2

𝑛𝑛
𝑗𝑗=1

�

(𝑚𝑚 + 𝑛𝑛 − 1)

�

20

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

20

𝑠𝑠=1

 (27) 

 
𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶 2) =  ��𝑆𝑆𝑆𝑆(2)2 + �𝐸𝐸(𝐶𝐶𝐶𝐶2) ∗ 𝐶𝐶𝐶𝐶𝑉𝑉max_2�

2� 
(28) 

   

𝐸𝐸(𝐶𝐶𝐶𝐶2) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶2 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  

𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶2) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶2 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

𝑥𝑥𝑖𝑖,1 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑡𝑡ℎ % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 

𝑥𝑥𝑗𝑗,2 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗𝑡𝑡ℎ % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2 

𝑚𝑚 = N𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 

𝑛𝑛 = N𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2 

𝑎𝑎𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑠𝑠 = % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 𝑎𝑎𝑎𝑎𝑎𝑎 2 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑡𝑡ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑠𝑠 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶2 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 20  

𝐶𝐶𝐶𝐶𝑉𝑉max_2 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2 

 

 



 
 
 
 

 

70 

 

For CS3 

 
𝐸𝐸(𝐶𝐶𝐶𝐶3)  =

∑ ∑ 𝑎𝑎𝑠𝑠 ∗ 𝑥𝑥𝑖𝑖,1𝑚𝑚
𝑖𝑖=1 𝑚𝑚� +

∑ 𝑏𝑏𝑠𝑠 ∗ 𝑥𝑥𝑗𝑗,2
𝑛𝑛
𝑗𝑗=1

𝑛𝑛�210
𝑠𝑠=1 + ∑ 𝑐𝑐𝑠𝑠 ∗ 𝑥𝑥𝑘𝑘,3

𝑜𝑜
𝑘𝑘=1 𝑜𝑜�

210
 (29) 

 

𝑆𝑆𝑆𝑆(3) = �

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

⎝

⎜
⎛
∑ 𝑎𝑎𝑠𝑠 ∗ �𝑥𝑥𝑖𝑖,1 − 𝐸𝐸(𝐶𝐶𝐶𝐶3)�

2
𝑚𝑚
𝑖𝑖=1 +

∑ 𝑏𝑏𝑠𝑠 ∗ �𝑥𝑥𝑗𝑗,2 − 𝐸𝐸(𝐶𝐶𝐶𝐶3)� 2𝑛𝑛
𝑗𝑗=1 +

∑ 𝑐𝑐𝑠𝑠 ∗ �𝑥𝑥𝑘𝑘,3 − 𝐸𝐸(𝐶𝐶𝐶𝐶3)�
2

𝑜𝑜
𝑘𝑘=1 ⎠

⎟
⎞

(𝑚𝑚 + 𝑛𝑛 + 𝑜𝑜 − 1)

�

210

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

210

𝑠𝑠=1

 (30)  

 
𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶 3) =  ��𝑆𝑆𝑆𝑆(3)2 + �𝐸𝐸(𝐶𝐶𝐶𝐶3) ∗ 𝐶𝐶𝐶𝐶𝑉𝑉max_3�

2� 
(31) 

𝐸𝐸(𝐶𝐶𝐶𝐶3) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶3 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  

𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶3) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶3 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

 𝑥𝑥𝑖𝑖,1 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑡𝑡ℎ % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 

𝑥𝑥𝑗𝑗,2 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗𝑡𝑡ℎ % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2 

𝑥𝑥𝑘𝑘,3 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑘𝑘𝑡𝑡ℎ % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 3 

𝑚𝑚 = N𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1 

𝑛𝑛 = N𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2 

𝑜𝑜 = N𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 3 

𝑎𝑎𝑠𝑠, 𝑏𝑏𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑠𝑠 = % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1, 2,𝑎𝑎𝑎𝑎𝑎𝑎 3, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑡𝑡ℎ𝑠𝑠𝑠𝑠𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  

𝑠𝑠 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝐶𝐶𝐶𝐶3 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 210  

𝐶𝐶𝐶𝐶𝑉𝑉max_3 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 3 
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6.1.2 Procedure to Find ϕc for Approach 1 

The values for m, n, and o are the number of % loss increments for which girder capacity 

was evaluated in condition states 1, 2, and 3 respectively. Girder moment capacities within each 

condition states are calculated for 1% increments of loss. Values of m, n, and o are summarized 

in Table 6.1 (see also Table 5.8 and Table 5.11).  

 

Table 6-1 Summary of values of m, n, and o used in Eq. (23) through (31) 
 

m n o 
NDOR Distribution Range GP 1 & 

GP 2 1 1 49 

Range Consistent with MBE GP 1 2 6 24 
GP 2 1 5 15 

 
 

COVmax  represents the variation in field measurements of deteriorated section thickness 

variation (refer to 5.1.2 Measurement in the Field) corresponding to the maximum percentage 

section loss in each scenario. COVmax values are shown in Table 6.2. 

 

Table 6-2 Summary of values of COVmax used in Eq. (25), (28), and (31) 
 

COVmax_1 COVmax_2 COVmax_3 
NDOR Distribution Range GP 1 & 

GP 2 0.01 0.01 0.045 

Range Consistent with MBE GP 1 0.01 0.038 0.045 
GP 2 0.01 0.028 0.045 

 
 

Example mean and standard deviation values obtained for the capacity of a W30x99 

girder with GP1 and GP2 deterioration profiles are provided in Table 6.3. 
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Table 6-3 Sample mean and standard deviation for CS's with GP1 and GP2 

 
 

A range of span lengths and girder spacings were considered in the reliability analyses. 

Span lengths ranged from 50 ft to 120 ft with an increment of 10 ft. Girder spacings varied from 

3.5 to 7 ft with an increment of 0.5 ft. The change in length and girder spacing directly affects 

the Girder Distribution Factor (GDF), which was determined according to AASHTO LRFD 

Specifications. These variations resulted in a total of (8 * 8 =) 64 cases. A total of 64 structural 

configurations * 3 CS classifications = 192 reliability analyses were performed to obtain ϕc 

values consistent with a target reliability index of 3.5. Possible future corrosion was reflected 

through a bias factor, as discussed in the previous chapter.  

6.1.3 ϕc for Approach 1 

Baseline ϕc values applicable to each CS group for Approach 1 are provided in Table 6.4 

for carbon steel in a rural environment, obtained by averaging the 64 values obtained for each CS 

with various structural configurations. As discussed in the previous chapter, multipliers to be 

applied to ϕc are provided in Table 6.5 for evaluations of bridges in more corrosive environments 

than NCHRP 301 “rural” conditions. Similarly, multipliers are provided in Table 6.6 for 

weathering steel in any environment. The multipliers are also averages to represent the 

considered structural configurations (span and girder spacing). Calibrated values for both 

baseline ϕc values and multipliers are provided for separate analyses of GPs and CS % loss 

ranges. 

 GP 1 GP 2 
W30X99 Mean Std. Dev. Mean Std. Dev. 

CS 1 1806 18.1 1776 17.8 
CS 2 1801 68.5 1767 67.4 
CS 3 1710 150.5 1613 225 
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Table 6-4 ϕc for carbon steel when the worst CS is known in a rural environment 

Carbon Steel in Rural Environment CS 1 CS 2 CS 3 

NDOR Distribution Range GP 1 0.99 0.94 0.69 
GP 2 0.98 0.94 0.42 

Range Consistent with MBE GP 1 0.99 0.93 0.80 
GP 2 0.98 0.92 0.75 

 

 

Table 6-5 Multiplier for ϕc for carbon steel in urban and marine environment 

 
 
 

Table 6-6 Multiplier for ϕc for weathering steel in the three environments 
 

Weathering Steel 
Rural Environment Urban Environment Marine 

Environment 
Multiplier for  ϕc 1 ϕc 2 ϕc 3 ϕc 1 ϕc 2 ϕc 3 ϕc 1 ϕc 2 ϕc 3 

NDOR 
Range 

GP 1 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 
GP2 1.00 1.00 1.00 0.98 0.98 0.96 0.98 0.98 0.97 

Consistent 
with MBE 

GP 1 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 
GP2 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.98 0.98 

 
 
 

The MBE indicates that load ratings should be performed using only sound material area, 

but Approach 1 only applies when no information is available to enable such rigor. Instead, the 

authors propose that a % loss is implemented on the deteriorated regions of girders according to 

 
Carbon Steel 

Urban Environment Marine Environment 
Multiplier for ϕc 1 ϕc 2 ϕc 3 ϕc 1 ϕc 2 ϕc 3 

NDOR Distribution 
Range 

GP 1 0.98 0.98 0.97 0.97 0.97 0.96 
GP2 0.96 0.96 0.93 0.95 0.95 0.91 

Range Consistent 
with MBE 

GP 1 0.98 0.98 0.97 0.97 0.97 0.96 
GP2 0.96 0.96 0.95 0.95 0.95 0.94 
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GP1 or GP2, as appropriate, according to Table 6.7. These section property penalties will 

produce results similar to the reliability analyses performed in this research to generate ϕc. 

 

Table 6-7 Percentage loss for condition states in Approach 1 

Distribution Profile Condition State Percentage Loss to use for Load Rating  
GP 1 1 0.5% 

2 2.3% 
3 8.4%% 

GP 2 1 0% 
2 1.3% 
3 7.2% 

NDOR’s Range 
(Both Profiles) 

1 0 % 
2 0.26% 
3 9.5% 

 
 
 

6.2 Approach 2 

Approach 2 is applicable when the relative CS proportions present along the girders are 

known, but not the locations along spans where particular condition states are located. For 

example, all deterioration distributions along the span in Figure 6.1 would be evaluated 

identically according to Approach 2. In most cases shown, the critical flexural section is CS1, but 

in some instances CS2 or CS3 could occur at or near the critical section (for instance, if the deck 

had cracked near midspan, allowing de-icing chemicals to penetrate through the concrete from 

the road surface to the steel). The total CS3 and CS2 proportions along the length would be 

known, but the load rating engineer could not differentiate between the possible distributions 

shown unless more information was available (in which case, Approach 3 would be appropriate).  
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Figure 6.1 Sample of possible distribution for one of the scenarios 

 

6.2.1 Quantifying Uncertainty in Approach 2 

In Approach 2, ϕc needs to account for the uncertainties due to variation in the amount of 

corrosion across a section, lack of exact percentage loss in a CS, and unknown location of 

deterioration. The procedure to address these uncertainties is similar to that presented in Section 

6.1.1 Quantifying Uncertainty in Approach 1. The combined uncertainty due to variation in the 

amount of corrosion across a section, lack of exact percentage loss in a CS, and unknown 

location of deterioration was evaluated using Eq. (34). The expected capacity for each scenario 

(where a “scenario” refers to a particular proportionate distribution of condition states) was 

calculated using the weighted average of girder moment capacities proportionate to the presence 

of each CS, as indicated in Eq. (32). The expected capacity is used in Eq. (33) to calculate the 

standard deviation from weighted variances using CS proportions as weights. Finally, the girder 

capacity standard deviation is calculated by using the SRSS of the value in Eq. (33) and the 
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standard deviation from the variation across a section associated with the maximum percentage 

loss (see section 5.1 Uncertainties in Section Deterioration). 

 

 
𝐸𝐸(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  = �𝑝𝑝𝑗𝑗 ∗ 𝜇𝜇𝑐𝑐𝑠𝑠𝑗𝑗

3

𝑗𝑗=1

  
(32) 

 

𝑆𝑆𝑆𝑆 = �
∑ ∑ 𝑝𝑝𝑗𝑗 �𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝐸𝐸(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)�

2𝑚𝑚𝑗𝑗
𝑖𝑖=1

3
𝑗𝑗=1

�∑ 𝑚𝑚𝑗𝑗
3
𝑗𝑗=1  � − 1

 

(33) 

 
𝑆𝑆𝑆𝑆(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = �𝑆𝑆𝐷𝐷2 + �𝐸𝐸(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) ∗ 𝐶𝐶𝐶𝐶𝑉𝑉max_𝑗𝑗�

2  
(34) 

 

Where, 

𝐸𝐸(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑆𝑆𝑆𝑆(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑗𝑗 = 1, 2, 𝑜𝑜𝑜𝑜 3 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝐶𝐶1,𝐶𝐶𝐶𝐶2, 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶3, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝑝𝑝𝑗𝑗 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 𝑗𝑗𝑡𝑡ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑚𝑚𝑗𝑗 =  n𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑗𝑗𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝜇𝜇𝑐𝑐𝑠𝑠𝑗𝑗 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑗𝑗𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑥𝑥𝑖𝑖,𝑗𝑗 =  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑖𝑖𝑡𝑡ℎ % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑗𝑗𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝐶𝐶𝐶𝐶𝑉𝑉max_𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑗𝑗𝑡𝑡ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 

Eq. (32), Eq. (33), and Eq. (34) are effectively identical to Eq. (29), Eq. (30), and Eq. 

(31) (from Approach 1 with CS3) executed for only a single value of the “s” scenario counter. 
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The pj term in Eq. (32) and Eq. (33) corresponds to as, bs, and cs in Eq. (29) and Eq. (30). 

Similarly, the mj takes the place of m, n, and o. 𝐶𝐶𝐶𝐶𝑉𝑉max_𝑗𝑗 represents COVmax_1, COVmax_2, and 

COVmax_3 in Approach 1 (see Table 6.2).  

Structural configurations with various combinations of span lengths and girder spacings 

were considered for Approach 2 similarly to Approach 1. For Approach 2, however, the 64 

potential combinations needed to be evaluated for each of the 231 possible CS combination 

scenarios, rather than only for the 3 general CS groups. The relationship between ϕc and 

expected moment capacity is nonlinear, as shown in Figure 6.2.  

Each point represents a combination of ϕc and deteriorated moment capacity for a 

particular combination of condition states. As CS3 increases, the moment capacity decreases 

(trending to the left in the figure). Similarly, maximum capacity (farthest right) corresponds a 

girder entirely in CS1. In the middle region, various combinations of condition states can possess 

similar mean capacity, yet have wider dispersion of possible simulated capacity (CS1 vs CS3 at 

the critical section). For example, two bridges may have unique and distinct proportionate 

combinations of CS1, CS2, and CS3, and simultaneously have similar expected capacities. One 

bridge may have proportionately more CS2 than CS3, and the other bridge may have more CS3 

than CS2 (and also more CS1, maintaining a similar expected capacity on average). The bridge 

with more CS1 and CS3 would have greater variation in the potential capacity at the critical 

section, and this greater uncertainty would correspond to a lower ϕc. 
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Figure 6.2 Moment capacity VS ϕc for the 231 combinations 

 

 
6.2.2 Artificial Neural Networks (ANNs)  

Artificial Neural Networks (ANNs) are a biologically inspired computer program 

designed to simulate the way the human brain processes the information to detect patterns and 

relationships in data and learn through experience (Agatonovic-Kustrin & Beresford, 2000). 

ANNs are trained to predict outcomes from a suite of known input-output scenarios until the 

output error predictions are minimized and the network reaches a specified level of accuracy.  

ANNs were used in this study as a nonlinear, multivariate prediction tool to estimate ϕc 

values for Approach 2. An ANN was trained using the percentage in each condition state as the 

input and analytically obtained ϕc values as the output. Over 14700 inputs were supplied to the 

neural network toolbox in MATLAB for ANN training, validation, and testing. The particular 

ANN architecture implemented for this study used 10 neurons in a single hidden layer to predict 
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ϕc for Approach 2 from the 3 proportionate percentages present for each CS in a particular 

scenario, as shown in Figure 6.3. 
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Figure 6.3 Neural network architecture 
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The default mathematical framework available from the Neural Network Toolbox was 

implemented for this study, with a log-sigmoid transfer function in the hidden layer, and a linear 

summation at the output layer. To manually evaluate the ANN, after weight and bias values have 

been obtained from training, the first step is to calculate inputs, ni, to each of the i hidden 

transfer functions: 

 

 
𝑛𝑛𝑖𝑖  = �𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝑖𝑖,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝐶𝐶𝐶𝐶�1𝑥𝑥3 �

% 𝐶𝐶𝐶𝐶1
% 𝐶𝐶𝐶𝐶2
% 𝐶𝐶𝐶𝐶3

�
3𝑥𝑥1

+ 𝑏𝑏𝑖𝑖 
(35) 

 

With 10 hidden neurons, the i subscript ranges from 1 to 10. 3 weights, w, are associated 

with each neuron. One scalar weight value corresponds to each % condition state. A bias term, 

bi, is added to the result of weights multiplied by % CS inputs, for each neuron, i. The resulting n 

values are passed through a log-sigmoid transfer function ranging from -1 to 1, which will 

become inputs, a, to the output layer from each of the i hidden neurons: 

 

 𝑎𝑎𝑖𝑖 =
2

1 + 𝑒𝑒−2𝑛𝑛𝑖𝑖
− 1  (36) 

 

The final step is to apply output layer weights, woutput, to the values exiting the hidden 

layer, a, sum the 10 results (shown in the equation below as a vector multiplication), and add a 

final bias term to obtain a single scalar result, ϕc: 

 

 ϕ𝑐𝑐 = �𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�10𝑥𝑥1
𝑇𝑇[𝑎𝑎]10𝑥𝑥1 + 𝑏𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (37) 
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6.2.3 ϕc for Approach 2 

To account for sound material area, an expected capacity can be determined which will 

be approximately consistent with the mean value obtained during and implemented in the 

reliability analyses. The expected capacity can be determined using a representative % loss 

obtained from Eq. (38), supplemented with the values provided in Table 6.8. 

 

 % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑐𝑐𝑐𝑐 ∗ % 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐶𝐶𝐶𝐶1 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑐𝑐𝑐𝑐2 ∗ % 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐶𝐶𝐶𝐶2

+  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑐𝑐𝑐𝑐3 ∗ % 𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝐶𝐶𝐶𝐶3 

(38) 

 

Table 6-8 Representative percentage loss for each condition state with Approach 2 

Distribution Profile Condition State Percentage Loss for Load Rating 
GP 1 1 0.5% 

2 4% 
3 19% 

GP 2 1 0 
2 2.5% 
3 12.5% 

NDOR’s Range (Both 
Profiles 

1 0 % 
2 0.5% 
3 25.5% 

 
 
 
Values obtained from ANN training, to be used in Eq. (35) and Eq. (37), are provided in 

Table 6.9 through Table 6.12. Weight and bias values have been calibrated for each deterioration 

profile, GP, and for both MBE-consistent and current NDOR section loss ranges.  

 
  



 
 
 
 

 

83 

 

Table 6-9 ANN coefficients for GP1 deterioration profile 

GP1 with range consistent with MBE 
Hidden Layer Output Layer  

CS_1 % CS_2 % CS_3% Bias Weights Bias 
W_1 1.93 -1.92 0.82 -3.06 0.19 

-0.12 

W_2 1.79 1.61 -1.17 -2.97 0.05 
W_3 -1.59 1.90 1.49 1.77 -0.05 
W_4 2.01 -0.01 2.42 -1.23 -0.83 
W_5 0.60 1.92 2.47 -0.38 -0.83 
W_6 -2.09 -1.92 0.51 0.63 -0.95 
W_7 -1.12 -1.33 2.07 -1.13 0.17 
W_8 0.38 2.86 -0.61 1.52 0.01 
W_9 1.82 2.03 1.48 1.85 1.54 
W_10 1.54 1.75 -0.81 2.99 -0.59 

 

 
Table 6-10 ANN coefficients for GP2 deterioration profile 

 
  

GP2 with range consistent with MBE 
Hidden Layer Output Layer 

  CS_1 % CS_2 % CS_3% Bias Weights Bias 
W_1 -0.98 -1.40 0.46 0.87 3.28 

0.437 
 

W_2 -2.10 3.35 -1.94 3.78 3.23 
W_3 -0.58 -0.35 -2.17 -2.41 4.22 
W_4 4.62 -2.94 3.30 -5.35 3.15 
W_5 1.07 -2.23 -2.24 1.00 -1.05 
W_6 4.26 -0.80 1.66 -1.65 0.04 
W_7 2.30 -1.46 -1.44 1.83 0.37 
W_8 -3.99 2.29 -3.88 2.16 -1.39 
W_9 -2.56 0.27 0.33 -3.31 -1.84 
W_10 1.15 -1.05 3.84 -3.93 -0.30 



 
 
 
 

 

84 

 

Table 6-11 ANN coefficients for GP 1 deterioration profile with NDOR Range 

 
 
Table 6-12 ANN coefficients for GP2 deterioration profile with NDOR Range 

 

 

 

GP1 with range consistent with current NDOR policy 
Hidden Layer Output Layer  

CS_1 % CS_2 % CS_3% Bias Weights Bias 
W_1 1.04 1.09 -1.67 -3.8819 -0.13 

0.024 

W_2 1.04 0.99 -2.09 -2.4450 1.03 
W_3 -0.40 2.84 0.01 1.8869 0.30 
W_4 1.85 -1.82 1.35 -0.6974 0.21 
W_5 1.05 0.96 -0.95 -0.2376 0.46 
W_6 2.35 -2.01 0.25 0.3942 -0.02 
W_7 -0.42 -2.34 0.20 -1.4051 0.09 
W_8 -2.92 1.12 0.74 -1.8546 0.02 
W_9 0.85 0.02 -1.03 2.5113 1.03 
W_10 0.87 1.71 -1.78 3.4655 -0.08 

GP2 with range consistent with current NDOR policy 
Hidden Layer Output Layer 

  CS_1 % CS_2 % CS_3% Bias Weights Bias 
W_1 -0.18 1.21 2.13 3.19 -0.02 

0.261 
 

W_2 0.68 -1.17 -2.38 -2.11 0.03 
W_3 2.02 -2.23 2.31 -3.64 -0.24 
W_4 0.93 1.27 2.78 -1.32 -0.71 
W_5 1.90 1.91 1.51 -0.64 -0.59 
W_6 0.47 2.59 2.61 -0.42 -1.07 
W_7 -1.97 1.15 1.25 -2.04 0.25 
W_8 -2.28 -2.30 -0.77 -0.99 -0.66 
W_9 -1.66 -1.75 -1.65 -2.49 -1.12 
W_10 -0.13 -0.20 -3.18 -4.33 3.12 
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The ANNs provided reliable estimations to correlate CS proportions to values of ϕc for 

bridge evaluation. Each set of ANN fitting parameters is described below, with a figure showing 

the general trend of ANN-predicted values on vertical axes versus on rigorous condition factors 

obtained by full reliability analyses the horizontal axes. Ideally, the results would follow a 

perfect linear trend line of y = 1.00x, with an R2 of 1. The frequencies of relative error 

magnitudes are not evident when only plotting analytical versus predicted values, so histograms 

are also provided to accompany each trend line plot. The standard error is also specified for each 

case. Ninety-five percent and 99% lower bound offsets approximately correspond to 2 and 3 

standard errors, respectively.  

Trend lines are shown for ANN predictions versus analytically determined ϕc values, 

together with accompanying histograms of ANN prediction errors in Figure 6.4 and Figure 6.5 

for MBE-consistent % loss ranges in each CS and GP1, in Figure 6.6 and Figure 6.7 for MBE-

consistent % loss ranges in each CS and GP2, in Figure 6.8 and Figure 6.9 for NDOR-

consistent % loss ranges in each CS and GP1, and in Figure 6.10 and Figure 6.11 for NDOR-

consistent % loss ranges in each CS and GP2. 

Standard errors were 1.03 x 10-4 and 4.24 x 10-5, and the most unconservative prediction 

errors were 0.036 and 0.012 for MBE-consistent % loss ranges with GP1 and GP2, respectively. 

Standard errors were 1.77 x 10-4 and 9.48 x 10-5, and the most unconservative prediction errors 

were 0.062 and 0.041 for NDOR-consistent % loss ranges with GP1 and GP2, respectively. 
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Figure 6.4 ANN ϕc prediction errors for MBE-consistent deterioration ranges and GP1 

 

 

 
Figure 6.5 Histogram of ANN ϕc prediction errors: MBE & GP1 
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Figure 6.6 ANN ϕc prediction errors for MBE-consistent deterioration ranges and GP2 

 

 

 
 

Figure 6.7 Histogram of ANN ϕc prediction errors: MBE & GP2 
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Figure 6.8 ANN ϕc prediction errors for NDOR-consistent deterioration ranges and GP1 

 

 

 
 

Figure 6.9 Histogram of ANN ϕc prediction errors: NDOR & GP1 
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Figure 6.10 ANN ϕc prediction errors for NDOR-consistent deterioration ranges and GP2 

 

 

 
 

Figure 6.11 Histogram of ANN ϕc prediction errors: NDOR & GP2 
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6.3 Approach 3 

Approach 3 applies when the locations of deteriorated sections are known along girder 

span, in addition to knowing the proportion of length over which particular condition states have 

occurred. In this approach, engineers need to model an equivalent condition state % loss at the 

locations noted in the field. An example of the distribution of condition states in a girder is 

shown in Figure 6.12. This hypothetical girder with a length of 50 ft. has condition state 2 in the 

first 5 ft (10% of total length), then progressing along the length, 13 ft (26%) in condition state 1, 

10 ft (20%) in condition state 3, 17 ft (34%) in condition state 1, and 5 ft (10%) in condition state 

2. If this distribution along the span was not known, the girder could be evaluated using 

Approach 2, knowing that 60% of the girder is in CS1, 20% of the girder is in CS2, and 20% of 

the girder is in CS3. Or, if the proportions of condition states are known, the bridge could be 

evaluated using the general CS3 category in Approach 1.  

 

 

Figure 6.12 Example condition state distribution along girder length 

 

Knowing the distribution of condition states along the span, it should be feasible to 

perform a load rating analysis accounting for the variation in induced load effects in addition to 

uncertain capacity at any particular condition state. The previous methods presumed that the 
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critical section occurred at the non-deteriorated girder critical section, but the true critical section 

can be identified when deterioration locations are known along the span. 

6.3.1 Quantifying Uncertainty in Approach 3 

In Approach 3, the ϕc must account for the uncertainties due to variation in the amount of 

corrosion across a section and unknown (exact) percentage loss within a condition state. These 

uncertainties are addressed similarly to previously described methods in Section 6.1.1 

Quantifying Uncertainty in Approach 1. Consequently, the combined uncertainty due to variation 

in the amount of corrosion, and unknown exact percentage loss can be evaluated using Eq. (41) 

for any of the three condition states. In Eq. (40) and Eq. (41), the expected capacity (E (CSj)) is 

calculated using Eq. (39), i.e. by taking arithmetic average of girder moment capacities, xi,j, at 

each 1% loss increment, i, within each CS group, j. The variation due to lack of exact percentage 

loss is calculated using Eq. (40), which is combined using SRSS to the standard deviation 

accounting for uncertain % loss variation across a section, as shown in Eq. (41). 

 

𝐸𝐸(𝐶𝐶𝐶𝐶𝐶𝐶) =
∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑛𝑛
𝑖𝑖=1

𝑚𝑚𝑗𝑗
  

(39) 

𝑆𝑆𝑆𝑆 =  ��
∑ ��𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝐸𝐸(𝐶𝐶𝐶𝐶𝐶𝐶)�

2
�𝑚𝑚𝑗𝑗

𝑖𝑖=1

𝑚𝑚𝑗𝑗 − 1 � 

(40) 

𝑆𝑆𝑆𝑆(𝐶𝐶𝐶𝐶𝐶𝐶) =  ��𝑆𝑆𝐷𝐷2 + (𝐸𝐸(𝐶𝐶𝐶𝐶𝐶𝐶) ∗ 𝐶𝐶𝐶𝐶𝑉𝑉max_𝑗𝑗 )^2� 
(41) 

Where, 

𝑗𝑗 = 1, 2 𝑜𝑜𝑜𝑜 3 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1, 2 𝑜𝑜𝑜𝑜 3 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

𝑥𝑥𝑖𝑖,𝑗𝑗 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑖𝑖𝑡𝑡ℎ % 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑗𝑗𝑡𝑡ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
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𝐸𝐸(𝐶𝐶 𝑆𝑆 𝑗𝑗) =  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗  

𝑆𝑆𝑆𝑆(𝐶𝐶 𝑆𝑆 𝑗𝑗) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑗𝑗𝑡𝑡ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑚𝑚𝑗𝑗 =  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑗𝑗𝑡𝑡ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

𝐶𝐶𝐶𝐶𝑉𝑉max_𝑗𝑗 = 𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑗𝑗𝑡𝑡ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

6.3.2 ϕc for Approach 3 

For Approach 3, it is appropriate to apply individual ϕc values for each CS region. For 

bridges with carbon steel and subject to minor future deterioration (“rural” environments, per 

NCHRP 301), ϕc values for each CS can be selected from Table 6.13, as appropriate to the 

ranges of deterioration guiding assignment of condition states during the inspection, and the 

prevalent deterioration profile (GP1 with bottom flange and web only, GP2 for full depth 

deterioration). If the bridge was constructed with weathering steel and/or subject to more severe 

future deterioration than “rural” conditions, the values obtained from Table 6.13 can be scaled by 

the appropriate multipliers from Table 6.14 or Table 6.15. 

 

Table 6-13 ϕc for each condition state and the range of percentage loss 

 
 
 
 

 Condition 
State 1 
range 

Condition 
State 2 
range 

Condition 
State 3 
range 

ϕc for 
Condition 

State 1 

ϕc for 
Condition 

State 2 

ϕc for 
Condition 

State 3 
NDOR Range 

with GP1 
deterioration 

0% 0-1% 1-50% 1.00 1.00 0.70 

NDOR Range 
with GP2 

deterioration 
0% 0-1% 1-50% 1.00 1.00 0.40 

MBE GP 1 0-1% 1-7% 7-35% 1.00 0.95 0.87 
MBE GP 2 0% 0-10% 10-30% 1.00 0.94 0.85 
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Table 6-14 Multipliers to ϕc for carbon steel in urban and marine environment 
 

Carbon Steel 
Urban Environment Marine Environment 

Multiplier for ϕc 1 ϕc 2 ϕc 3 ϕc 1 ϕc 2 ϕc 3 
NDOR Distribution 

Range 
GP 1 0.98 0.98 0.97 0.97 0.97 0.96 
GP2 0.96 0.96 0.93 0.95 0.95 0.91 

Range Consistent 
with MBE 

GP 1 0.98 0.98 0.97 0.97 0.97 0.96 
GP2 0.96 0.96 0.95 0.95 0.95 0.94 

 

 
Table 6-15 Multipliers to ϕc for weathering steel in the three environments 

 
 
 
Similar to Approaches 1 and 2, an approximate adjustment to section properties is 

proposed to account for sound material and correspond to the reliability analyses performed to 

produce the ϕc factors. As in Approach 1, tabulated values are provided in Table 6.16 to produce 

appropriate reduced sound material section properties. 

 

 

 

 

 

 

 
Weathering Steel 

Rural Environment Urban Environment Marine Environment 
Multiplier for  ϕc 1 ϕc 2 ϕc 3 ϕc 1 ϕc 2 ϕc 3 ϕc 1 ϕc 2 ϕc 3 

NDOR 
Range 

GP 1 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 
GP2 1.00 1.00 1.00 0.98 0.98 0.96 0.98 0.98 0.97 

Consistent 
with MBE 

GP 1 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 
GP2 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.98 0.98 
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Table 6-16 Percentage loss for each condition state in Approach 3 

 
 

6.4 Special Approach 

The concept of ϕc was introduced in NCHRP 301 to account for future corrosion and 

increased variability in section properties for the deteriorated member. Standard procedures do 

not explicitly require measurement of remaining section, only requiring that load ratings should 

be based on “sound material” remaining. If a section loss is noted, the value is typically a visual 

estimate rather than a true measurement. The lack of measurements from the field and the 

concept of condition state as a range of section loss combine together to introduce a substantial 

source of uncertainty in load ratings. If field measurements are available, the uncertainty 

associated with the sound material remaining would be greatly reduced. 

If a special inspection is performed, and measurement values and locations are noted in 

inspection documentation, the only remaining uncertainties to address with ϕc would be 

increased variability across the section (see 5.1 Uncertainties in Section Deterioration) and future 

section loss between inspections (see 5.2 Future Corrosion). Reliability analyses were performed 

for all percentage loss increments from 0 to 50%, accounting for the COV for section variability 

and the bias for future corrosion. Percent loss thresholds are noted in Table 6.17, corresponding 

Distribution Profile Condition State Percentage Loss to use for Load Rating 
GP 1 1 0.5% 

2 4% 
3 19% 

GP 2 1 0% 
2 2.5% 
3 12.5% 

NDOR’s Range 
(Both Profiles 

1 0 % 
2 0.5% 
3 25.5% 
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to 0.05 increments of ϕc for carbon steel in rural environments. Other steel and/or environment 

conditions should be adjusted by the modifiers in the appropriate column, multiplied by the basic 

value for carbon steel in rural environments.  

 

Table 6-17 ϕc and multiplier for different range of deterioration 

 
 

6.5 Selection of ϕc for Load Rating 

This section is provided to simplify selection of the appropriate ϕc based on the 

information provided by the inspection. The first step is to identify the type of steel used to 

construct the bridge (carbon or weathering) and the environment where the bridge is located 

(rural, industrial, or marine conditions, consistent with NCHRP 301). This process is shown in 

Figure 6.13. Next, determine the type of deterioration profile (GP1 or GP2, refer to 3.2.2 Girder 

Deterioration Profile Models) present in the girder. If this information is unknown, GP2 can be 

conservatively assumed. Figure 6.14 identifies the appropriate type of approach consistent with 

the information available to the load rating engineer. The Special Approach is not included in 

Figure 6.14 because this method requires a special inspection. If the information for the Special 

Approach is present, Figure 6.18 can be used for the process. 

 
Carbon Steel Weathering Steel 

Percentage loss Rural Urban Marine Rural Urban Marine 
Up to 3.0% 1.00 *1.00 *1.00 *1.00 *1.00 *1.00 
Up to 8.0% 0.95 *1.00 *1.00 *1.00 *1.00 *1.00 
Up to 28.0% 0.90 *0.95 *0.95 *1.00 *1.00 *1.00 
Up to 45.0% 0.85 *0.95 *0.95 *1.00 *1.00 *1.00 
Up to 50.0% 0.80 *0.95 *0.95 *1.00 *1.00 *1.00 
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Figure 6.13 Flowchart to start the rating procedure 
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Figure 6.14 Flowchart to determine appropriate approach 
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Figure 6.15 Flowchart to determine the ϕc for Approach 1 
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Figure 6.16 Flowchart to determine the ϕc for Approach 2 

Approach 2 

Percentage of 
each condition 

state known 
 

%CS2 %CS3 %CS1 

Type of Steel 
Type of Environment 

Girder Distribution Profile  
(GP1 and GP2) 

GP 1  GP 2 

Table 6.8, 
Table 6.9, 
Table 6.11 

Table 6.8, 
Table 6.10, 
Table 6.12 

ϕc; 
% section 

loss 

Multiplier for type of steel and 
environment  

(Table 6.14 and Table 6.15) 



 
 
 
 

 

100 

 

 

Figure 6.17 Flowchart to determine the ϕc for Approach 3 
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Figure 6.18 Flowchart to determine the ϕc for Special Approach  
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Chapter 7:  Summary and Conclusion 

Inspections provide vital information about the level of deterioration present in girders, 

but the information available to the load rating engineer varies throughout the inventory, 

resulting in unintended and unaccounted for fluctuations in rating reliability without the use of 

condition factors (ϕc). Condition factors for steel girder bridges should account for increased 

uncertainty in the resistance of deteriorated girders arising from non-uniform girder deterioration 

across a section, unknown deterioration severity (percent section loss), unknown location(s) of 

deterioration along the span, and potential future deterioration over the next inspection cycle. 

There is little objective procedural guidance at present to support reliable assignment of ϕc 

values during bridge evaluations. This research is an advancement towards an objective 

quantification of ϕc. 

Bounded ranges of steel girder section loss with corresponding calibrated condition factor 

(ϕc) values have been proposed in this study for bridges containing Good, Fair, and/or Poor 

condition states. It is expected that a bridge assessed as Severe will receive a detailed inspection 

by an engineer, and the additional uncertainty associated with deteriorated conditions will be 

greatly diminished. The calibrated ϕc values account for increased uncertainty in the resistance 

of deteriorated steel girders and the likely future deterioration of these members between 

inspection cycles.  

The MBEI recognizes four condition states (CS1 to CS4) corresponding approximately to 

Good, Fair, Poor, and Severe, respectively. Ranges of section loss were estimated based on 

inference from the subjective descriptions of the Good, Fair, and Poor condition states in the 

MBEI. These estimated ranges were referred to as NDOR’s ranges, because NDOR (as well as 

other agencies) are currently using the subjective MBEI descriptions for inspection records. This 



 
 
 
 

 

103 

 

report presents an alternative set of ϕc values from those found in the MBE, in part to address the 

uncertainty in severity of section loss. Additionally, two alternative sets of percentage section 

loss ranges (for two girder deterioration profiles) are proposed, calibrated to more closely match 

ϕc values provided in the MBE. 

Four approaches for varying levels of available inspection information are proposed to 

account for a wide range of load rating situations. Three approaches are based on the current 

condition state description model, which categorizes the deterioration of the girder into one of 

the four condition states. The fourth approach deviated from the traditional condition state model 

to a more detailed rating procedure based on the section loss percentage present in the girder. 

The two most influential aspects of information when assigning a condition factor are: (1) 

location of the section loss along the spans, and (2) exact severity of section loss at a section. The 

unknown location of deterioration contributes substantial additional uncertainty as described in 

Approaches 1 and 2, lowering the ϕc value. The uncertainty in deterioration location can be 

mitigated with minimum effort during the inspection process by referring to pictures taken 

during inspections. Approach 3 and the Special Approach can be performed when the locations 

of the condition states along spans are known. In Approach 3, the description in the notes section 

for the portion(s) and location(s) of corrosion reduces the uncertainty in the load rating. The 

Special Approach requires measured values of section loss corresponding to positions along the 

girder lengths, resulting in the most accurate load rating. 

The other primary challenge in assigning ϕc is the interpretation of deterioration severity 

by the load rating engineer, based on inspection reports. Currently, condition states are used to 

describe deterioration severity, but no quantitative guidance is available to inspectors or load 

rating engineers correlating condition states to section loss. This research suggests objective 
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ranges for percentage section loss due to corrosion corresponding to condition states, intended to 

improve uniformity in the inspection process and ensure reliable and consistent transfer of 

information to the load rating engineer. Approaches 1 through 3 have quantitatively and 

algorithmically accounted for uncertainties in a range of section loss, and therefore implicitly 

include this uncertainty in the proposed ϕc values. The Special Approach does not use traditional 

condition state descriptions, removing this aspect of uncertainty from the ϕc values with that 

approach. 

Future research is required to address the effects of other defects present in various types 

of bridges. Other defects, such as cracking, have characteristic condition states that need to be 

objectively characterized to improve the reliability of the load rating. Condition states need to be 

clearly and objectively defined for all element types and associated defects in the MBEI, as has 

been described in this research for steel girder corrosion. Inspection records based on clear, 

objective definitions for condition states will facilitate consistency among ratings that provide 

more uniform safety throughout the inventory.  

In conclusion, this research is a step towards improving the LRFR load rating procedure 

for structures containing appreciable deterioration. If a bridge with deterioration is carefully 

modeled with all its defects during load rating, the rating procedure should produce a capacity 

consistent with the reliability intended in LRFR. The ϕc in LRFR is the only factor that accounts 

for the increased uncertainties in the capacity of the girder due to deterioration, therefore, the use 

of ϕc is vital for consistently reliable load rating. The uncertainties associated with ϕc can be 

decreased with comprehensive inspection, which would consequently decrease the penalty by ϕc 

to achieve the target reliability in LRFR or increase the estimation of the nominal capacity. The 

four approaches show that penalty by ϕc decreases with increasing level of inspection detail. 
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Moving forward, inspection detail should be standardized, and additional types of defects in 

various elements, other than corrosion in steel girders, should be studied to extend the use of ϕc.  



 
 
 
 

 

106 

 

References 

AASHTO. (2014). Manual for bridge evaluation, 2nd edition, with 2011, 2013, and 2014 

Interim revisions (2nd edition ed.). Washington, D.C.: AASHTO. 

Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural network 

(ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical 

and Biomedical Analysis, 22(5), 717-727.  

Albrecht, P., & Naeemi, A. H. (1984). Performance of weathering steel in bridges. NCHRP 

Report, (272) 

Ambler, H., & Bain, A. (1955). Corrosion of metals in the tropics. Journal of Applied Chemistry, 

5(9), 437-467.  

ASTM International. (2011). ASTM G103(2011) standard practice for preparing, cleaning, and 

evaluating corrosion test specimens. West Conshohocken, PA: ASTM International. 

ASTM International. (2015). ASTM G5010(2015) standard practice for conducting atmospheric 

corrosion tests on metals. West Conshohocken, PA: ASTM International. 

Baboian, R. R. B. (2005). Corrosion tests and standards: Application and interpretation 

Czarnecki, A. A., & Nowak, A. S. (2008). Time-variant reliability profiles for steel girder 

bridges. Structural Safety, 30(1), 49-64.  

Dean, S. W. (1990). Corrosion testing of metals under natural atmospheric conditions. Corrosion 

testing and evaluation: Silver anniversary volume () ASTM International. 



 
 
 
 

 

107 

 

Federal Highway Administration. (2010). Federal-aid policy guide. Washington, D.C.: U.S. 

Department of Transportation. 

Federal Highway Administration. (2012). Bridge inspector's reference manual. Washington, 

D.C.: U.S. Department of Transportation. 

Kayser, J. R., & Nowak, A. S. (1987). Evaluation of corroded steel bridges. Bridges and 

Transmission Line Structures, 35-46.  

Kayser, J. R., & Nowak, A. S. (1989a). Capacity loss due to corrosion in steel-girder bridges. 

Journal of Structural Engineering, 115(6), 1525-1537.  

Kayser, J. R., & Nowak, A. S. (1989b). Reliability of corroded steel girder bridges. Structural 

Safety, 6(1), 53-63.  

Komp, M. (1987). Atmospheric corrosion ratings of weethering steels―calculation and 

significance. Materials Performance, 26(7), 42-44.  

Kulicki, J., Prucz, Z., Sorgenfrei, D., Mertz, D., & Young, W. (1990). Guidelines for evaluating 

corrosion effects in existing steel bridges 

McCrum, R., Arnold, C. J., & Dexter, R. (1985). Current status report: Effects of corrosion on 

unpainted weathering steel bridges. Current Status Report: Effects of Corrosion on 

Unpainted Weathering Steel Bridges,  

Moses, F., & Verma, D. (1987). In Transportation Research Board (Ed.), NCHRP report 

301: Load capacity evaluation of existing bridges. Washington, DC: 



 
 
 
 

 

108 

 

Moses, F. (2001). NCHRP 454: Calibration of load factors for LRFR bridge evaluation. 

Washington, D.C.: Transportation Research Board. 

Nebraska Department of Roads: Bridge Division. (2015). Bridge inspection program manual. 

Nowak S., A., & Collins R., K. (2013). Reliability of structures (second ed.). Boca Raton, FL: 

Taylor & Francis Group. 

Patras, W. (2016). Personal communication 

Wang, N. (2010). Reliability-Based Condition Assessment of Existing Highway Bridges,  

Weseman, W. (1995). Recording and coding guide for the structure inventory and appraisal of 

the nation's bridges. United States Department of Transportation (Ed.), Federal Highway 

Administration, USA,  

Yunovich, M., Thompson, N., Balvanyos, T., & Lave, L. (2001). Corrosion cost and preventive 

strategies in the united States—Appendix d—highway bridges. Federal Highway 

Administration, FHWA-RD-01-157,  

Zmetra, K., Zaghi, A. E., & Wille, K. (2015). Rehabilitation of steel bridge girders with corroded 

ends using ultra-high performance concrete. Structures Congress 2015  

  


	Steelman M043 Cover
	Steelman M043 FINAL_v3
	List of Figures
	Chapter 1:  Introduction
	Chapter 2:  Literature Review
	2.1 Overview of Bridge Inspection and Evaluation
	2.1.1 Bridge Inspection Types and Reporting

	2.2 Deterioration Mechanisms and Rates
	2.2.1 Rate of Corrosion

	2.3 Development of LRFR Methodology
	2.4 Steel Bridge Reliability with Deterioration

	Chapter 3:  Overview of Methodology
	3.1 Condition States and ϕc
	3.1.1 Inspection Methods, Policies, and Procedures in use by NDOR

	3.2 Bridge Surveying and Describing and Profiling the Deterioration
	3.2.1 Deterioration Patterns
	3.2.2 Girder Deterioration Profile Models


	Chapter 4:  Reliability Analysis
	Chapter 5:  Uncertainty Contributions to Condition Factors
	5.1 Uncertainties in Section Deterioration
	5.1.2 Measurement in the Field

	5.2 Future Corrosion
	5.3 Uncertainty due to Range of Section Loss in each Condition State
	5.3.1 Determining Range of Section Loss within each Condition State
	5.3.2 Range Consistent with NDOR’s Current Inspection Procedure
	5.3.3 Calibrating the Range of Condition State to MBE Values

	5.4 Uncertainty in the Location of the Deterioration
	5.4.1 Introduction
	5.4.2 Approaches to Determine ϕc Depending on Inspection Information


	Chapter 6:  Condition Factor Calculation and Implementation
	6.1 Approach 1
	6.1.1 Quantifying Uncertainty in Approach 1
	For CS 1
	For CS2
	For CS3

	6.1.2 Procedure to Find ϕc for Approach 1
	6.1.3 ϕc for Approach 1

	6.2 Approach 2
	6.2.1 Quantifying Uncertainty in Approach 2
	6.2.2 Artificial Neural Networks (ANNs)
	6.2.3 ϕc for Approach 2

	6.3 Approach 3
	6.3.1 Quantifying Uncertainty in Approach 3
	6.3.2 ϕc for Approach 3

	6.4 Special Approach
	6.5 Selection of ϕc for Load Rating

	Chapter 7:  Summary and Conclusion
	References


